285 resultados para Leakage detection
Resumo:
In this paper, we present the study and implementation of a low-cost system to detect the occurrences of tsunamis at significantly smaller laboratory scale. The implementation is easily scalable for real-time deployment. Information reported in this paper includes the experimentally recorded response from the pressure sensor giving an indication as well as an alarm at remote place for the detection of water turbulence similar to the case of tsunami. It has been found that the system developed works very well in the laboratory scale.
Acoustic emission technique for leak detection in an end shield of a pressurised heavy water reactor
Resumo:
This paper discusses a successful application of the Acoustic Emission Technique (AET) for the detection and location of leak paths present on an inaccessible side of an end shield of a Pressurised Heavy Water Reactor (PHWR). The methodology was based on the fact that air- and water-leak AE signals have different characteristic features. Baseline data was generated from a sound end shield of a PHWR for characterising the background noise. A mock-up end shield system with saw-cut leak paths was used to verify the validity of the methodology. It was found that air-leak signals under pressurisation (as low as 3 psi) could be detected by frequency domain analysis. Signals due to air leaks from various locations of defective end shield were acquired and analysed. It was possible to detect and locate leak paths. The presence of detected leak paths was further confirmed by an alternative test.
Resumo:
This paper describes the design and development of a Fiber Bragg Grating (FBG) sensor system for monitoring tsunami waves generated in the deep ocean. An experimental setup was designed and fabricated to simulate the generation and propagation of a tsunami wave. The characteristics and efficiency of the developed FBG sensor was evaluated with a standard commercial Digiquartz sensor. For real time monitoring of tsunami waves, FBG sensors bonded to a cantilever is used and the wavelength shifts (Delta lambda(B)) in the reflected spectra resulting from the strain/pressure imparted on the FBGs have been recorded using a high-speed Micron Optics FBG interrogation system. The parameters sensed are the signal burst during tsunami generation and pressure variations at different places as the tsunami wave propagates away from the source of generation. The results obtained were compared with the standard commercial sensor used in tsunami detection. The observations suggest that the FBG sensor was highly sensitive and free from many of the constraints associated with the commercial tsunameter.
Resumo:
The possibility of advanced indication of moisture stress in a crop by small prepared plots with compacted or partially sand-substituted soils is examined by an analytical simulation. A series of soils and three crops are considered for the simulation. The moisture characteristics of the soils are calculated with an available model. Using average potential evapotranspiration values and a simple actual evapotranspiration model, the onset of moisture stress in the natural and indicator plots is calculated for different degrees of sand substitution and compaction. Cases where sand substitution fails are determined. The effect of intervening rainfall and limited root depth on the beginning of moisture stress is investigated.
Resumo:
The problem of narrowband CFAR (constant false alarm rate) detection of an acoustic source at an unknown location in a range-independent shallow ocean is considered. If a target is present, the received signal vector at an array of N sensors belongs to an M-dimensional subspace if N exceeds the number of propagating modes M in the ocean. A subspace detection method which utilises the knowledge of the signal subspace to enhance the detector performance is presented in thisMpaper. It is shown that, for a given number of sensors N, the performance of a detector using a vector sensor array is significantly better than that using a scalar sensor array. If a target is detected, the detector using a vector sensor array also provides a concurrent coarse estimate of the bearing of the target.
Resumo:
Background:Bacterial non-coding small RNAs (sRNAs) have attracted considerable attention due to their ubiquitous nature and contribution to numerous cellular processes including survival, adaptation and pathogenesis. Existing computational approaches for identifying bacterial sRNAs demonstrate varying levels of success and there remains considerable room for improvement. Methodology/Principal Findings: Here we have proposed a transcriptional signal-based computational method to identify intergenic sRNA transcriptional units (TUs) in completely sequenced bacterial genomes. Our sRNAscanner tool uses position weight matrices derived from experimentally defined E. coli K-12 MG1655 sRNA promoter and rho-independent terminator signals to identify intergenic sRNA TUs through sliding window based genome scans. Analysis of genomes representative of twelve species suggested that sRNAscanner demonstrated equivalent sensitivity to sRNAPredict2, the best performing bioinformatics tool available presently. However, each algorithm yielded substantial numbers of known and uncharacterized hits that were unique to one or the other tool only. sRNAscanner identified 118 novel putative intergenic sRNA genes in Salmonella enterica Typhimurium LT2, none of which were flagged by sRNAPredict2. Candidate sRNA locations were compared with available deep sequencing libraries derived from Hfq-co-immunoprecipitated RNA purified from a second Typhimurium strain (Sittka et al. (2008) PLoS Genetics 4: e1000163). Sixteen potential novel sRNAs computationally predicted and detected in deep sequencing libraries were selected for experimental validation by Northern analysis using total RNA isolated from bacteria grown under eleven different growth conditions. RNA bands of expected sizes were detected in Northern blots for six of the examined candidates. Furthermore, the 5'-ends of these six Northern-supported sRNA candidates were successfully mapped using 5'-RACE analysis. Conclusions/Significance: We have developed, computationally examined and experimentally validated the sRNAscanner algorithm. Data derived from this study has successfully identified six novel S. Typhimurium sRNA genes. In addition, the computational specificity analysis we have undertaken suggests that similar to 40% of sRNAscanner hits with high cumulative sum of scores represent genuine, undiscovered sRNA genes. Collectively, these data strongly support the utility of sRNAscanner and offer a glimpse of its potential to reveal large numbers of sRNA genes that have to date defied identification. sRNAscanner is available from: http://bicmku.in:8081/sRNAscanner or http://cluster.physics.iisc.ernet.in/sRNAscanner/.
Resumo:
A scheme for the detection and isolation of actuator faults in linear systems is proposed. A bank of unknown input observers is constructed to generate residual signals which will deviate in characteristic ways in the presence of actuator faults. Residual signals are unaffected by the unknown inputs acting on the system and this decreases the false alarm and miss probabilities. The results are illustrated through a simulation study of actuator fault detection and isolation in a pilot plant doubleeffect evaporator.
Resumo:
In this paper, we propose a training-based channel estimation scheme for large non-orthogonal space-time block coded (STBC) MIMO systems.The proposed scheme employs a block transmission strategy where an N-t x N-t pilot matrix is sent (for training purposes) followed by several N-t x N-t square data STBC matrices, where Nt is the number of transmit antennas. At the receiver, we iterate between channel estimation (using an MMSE estimator) and detection (using a low-complexity likelihood ascent search (LAS) detector) till convergence or for a fixed number of iterations. Our simulation results show that excellent bit error rate and nearness-to-capacity performance are achieved by the proposed scheme at low complexities. The fact that we could show such good results for large STBCs (e.g., 16 x 16 STBC from cyclic division algebras) operating at spectral efficiencies in excess of 20 bps/Hz (even after accounting for the overheads meant for pilot-based channel estimation and turbo coding) establishes the effectiveness of the proposed scheme.
Resumo:
Artificial neural networks (ANNs) have shown great promise in modeling circuit parameters for computer aided design applications. Leakage currents, which depend on process parameters, supply voltage and temperature can be modeled accurately with ANNs. However, the complex nature of the ANN model, with the standard sigmoidal activation functions, does not allow analytical expressions for its mean and variance. We propose the use of a new activation function that allows us to derive an analytical expression for the mean and a semi-analytical expression for the variance of the ANN-based leakage model. To the best of our knowledge this is the first result in this direction. Our neural network model also includes the voltage and temperature as input parameters, thereby enabling voltage and temperature aware statistical leakage analysis (SLA). All existing SLA frameworks are closely tied to the exponential polynomial leakage model and hence fail to work with sophisticated ANN models. In this paper, we also set up an SLA framework that can efficiently work with these ANN models. Results show that the cumulative distribution function of leakage current of ISCAS'85 circuits can be predicted accurately with the error in mean and standard deviation, compared to Monte Carlo-based simulations, being less than 1% and 2% respectively across a range of voltage and temperature values.
Resumo:
We present a low-complexity algorithm for intrusion detection in the presence of clutter arising from wind-blown vegetation, using Passive Infra-Red (PIR) sensors in a Wireless Sensor Network (WSN). The algorithm is based on a combination of Haar Transform (HT) and Support-Vector-Machine (SVM) based training and was field tested in a network setting comprising of 15-20 sensing nodes. Also contained in this paper is a closed-form expression for the signal generated by an intruder moving at a constant velocity. It is shown how this expression can be exploited to determine the direction of motion information and the velocity of the intruder from the signals of three well-positioned sensors.
Resumo:
Digoxigenin (DIG)-labeled DNA probe was developed for a sensitive and rapid detection of the Tobacco streak virus (TSV) isolates in India by dot-blot and tissue print hybridization techniques. DIG-labeled DNA probe complementary to the coat protein (CP) region of TSV sunflower isolate was designed and used to detect the TSV presence at field levels. Dot-blot hybridization was used to check a large number of TSV isolates with a single probe. In addition, a sensitivity of the technique was examined with the different sample extraction methods. Another technique, the tissue blot hybridization offered a simple, reliable procedure and did not require a sample processing. Thus, both non-radioactively labeled probe techniques could facilitate the sample screening during TSV outbreaks and offer an advantage in quarantine services.
Resumo:
A new scheme is proposed for the detection of premature ventricular beats, which is a vital function in rhythm monitoring of cardiac patients. A transformation based on the first difference of the digitized electrocardiogram (ECG) signal is developed for the detection and delineation of QRS complexes. The method for classifying the abnormal complexes from the normal ones is based on the concepts of minimum phase and signal length. The parameters of a linear discriminant function obtained from a training feature vector set are used to classify the complexes. Results of application of the scheme to ECG of two arrhythmia patients are presented.
Resumo:
We present a low-complexity algorithm based on reactive tabu search (RTS) for near maximum likelihood (ML) detection in large-MIMO systems. The conventional RTS algorithm achieves near-ML performance for 4-QAM in large-MIMO systems. But its performance for higher-order QAM is far from ML performance. Here, we propose a random-restart RTS (R3TS) algorithm which achieves significantly better bit error rate (BER) performance compared to that of the conventional RTS algorithm in higher-order QAM. The key idea is to run multiple tabu searches, each search starting with a random initial vector and choosing the best among the resulting solution vectors. A criterion to limit the number of searches is also proposed. Computer simulations show that the R3TS algorithm achieves almost the ML performance in 16 x 16 V-BLAST MIMO system with 16-QAM and 64-QAM at significantly less complexities than the sphere decoder. Also, in a 32 x 32 V-BLAST MIMO system, the R3TS performs close to ML lower bound within 1.6 dB for 16-QAM (128 bps/Hz), and within 2.4 dB for 64-QAM (192 bps/Hz) at 10(-3) BER.
Resumo:
In order to describe the atmospheric turbulence which limits the resolution of long-exposure images obtained using ground-based large telescopes, a simplified model of a speckle pattern, reducing the complexity of calculating field-correlations of very high order, is presented. Focal plane correlations are used instead of correlations in the spatial frequency domain. General tripple correlations for a point source and for a binary are calculated and it is shown that they are not a strong function of the binary separation. For binary separations close to the diffraction limit of the telescope, the genuine triple correlation technique ensures a better SNR than the near-axis Knox-Thompson technique. The simplifications allow a complete analysis of the noise properties at all levels of light.
Resumo:
A cytosine-specific DNA methyltransferase (EC 2.1.1.37) has been purified to near homogeneity from a mealybug (Planococcus lilacinus). The enzyme can methylate cytosine residues in CpG sequences as well as CpA sequences. The apparent molecular weight of the enzyme was estimated as 135,000 daltons by FPLC. The enzyme exhibits a processive mode of action and a salt dependance similar to mammalian methylases. Mealybug methylase exhibits a preference for denatured DNA substrates.