140 resultados para Joints nonlinear analysis
Nonlinear dynamic analysis of dragonfly inspired piezoelectrically driven flapping and pitching wing
Resumo:
The nonlinear equations for coupled elastic flapping-twisting motion of a dragonfly in- spired smart flapping wing are used for a flapping wing actuated from the root by a PZT unimorph in the piezofan configuration. Excitation by the piezoelectric harmonic force generates only the flap bending motion, which in turn, induces the elastic twist motion due to interaction between flexural and torsional vibrations modes. An unsteady aerodynamic model is used to obtain the aerodynamic forces. Numerical simulations are performed using a wing whose size is the same as the dragonfly Sympetrum Frequens wing. It is found that the value of average lift reaches to its maximum when the smart flapping wing is excited at a frequency closer to the natural frequency in torsion. Moreover, consideration of the elastic twisting of flapping wing leads to an increase in the lift force. It is also found that the flapping wing generates sufficient lift to support its own weight and carry a small pay- load. Therefore, the piezoelectrically actuated smart flapping wing based on the geometry of Sympetrum Frequens wing and undergoing flapping-twisting motions may be considered as a potential candidate for use in MAV applications.
Resumo:
Fiber reinforced laminated composite open-section beams are widely used as bearingless rotor flex beams because of their high specific strength and stiffness as well as fatigue life. These laminated composite structures exhibit a number of different failure modes, including fiber-matrix debonding within individual layers, delamination or separation of the layers, transverse cracks through one or more layers and fiber fracture. Delamination is a predominant failure mode in continuous fiber reinforced laminated composites and often initiate near the free edges of the structure. The appearance of delaminations in the composite rotorcraft flexbeams can lead to deterioration of the mechanical properties and, in turn, the helicopter performance as well as safety. Understanding and predicting the influence of free-edge delamination on the overall behavior of the laminates will provide quantitative measures of the extent of the damage and help ensure their damage tolerance.
Resumo:
Adhesives are widely used to execute the assembly of aerospace and automotive structures due to their ability to join dissimilar materials, reduced stress concentration, and improved fatigue resistance. The mechanical behavior of adhesive joints can be studied either using analytical models or by conducting mechanical tests. However, the complexity owing to multiple interfaces, layers with different properties, material and geometric nonlinearity and its three-dimensional nature combine to increase the difficulty in obtaining an overall system of governing equations to predict the joint behavior. On the other hand, experiments are often time consuming and expensive due to a number of parameters involved. Finite element analysis (FEA) is profoundly used in recent years to overcome these limitations. The work presented in this paper involves the finite element modeling and analysis of a composite single lap joint where the adhesive-adherend interface region was modeled using connector elements. The computed stresses were compared with the experimental stresses obtained using digital image correlation technique. The results showed an agreement. Further, the failure load predicted using FEA was found to be closer to the actual failure load obtained by mechanical tests.
Resumo:
A wavelet spectral finite element (WSFE) model is developed for studying transient dynamics and wave propagation in adhesively bonded composite joints. The adherands are formulated as shear deformable beams using the first order shear deformation theory (FSDT) to obtain accurate results for high frequency wave propagation. Equations of motion governing wave motion in the bonded beams are derived using Hamilton's principle. The adhesive layer is modeled as a line of continuously distributed tension/compression and shear springs. Daubechies compactly supported wavelet scaling functions are used to transform the governing partial differential equations from time domain to frequency domain. The dynamic stiffness matrix is derived under the spectral finite element framework relating the nodal forces and displacements in the transformed frequency domain. Time domain results for wave propagation in a lap joint are validated with conventional finite element simulations using Abaqus. Frequency domain spectrum and dispersion relation results are presented and discussed. The developed WSFE model yields efficient and accurate analysis of wave propagation in adhesively-bonded composite joints. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
SU8-based micromechanical structures are widely used as thermal actuators in the development of compliant micromanipulation tools. This paper reports the design, nonlinear thermomechanical analysis, fabrication, and thermal actuation of SU8 actuators. The thermomechanical analysis of the actuator incorporates nonlinear temperature-dependent properties of SU8 polymer to accurately model its thermal response during actuation. The designed SU8 thermal actuators are fabricated using surface micromachining techniques and the electrical interconnects are made to them using flip-chip bonding. The issues due to thermal stress during fabrication are discussed and a novel strategy is proposed to release the thermal stress in the fabricated actuators. Subsequent characterization of the actuator using an optical profilometer reveals excellent thermal response, good repeatability, and low hysteresis. The average deflection is similar to 8.5 mu m for an actuation current of similar to 5 mA. The experimentally obtained deflection profile and the tip deflection at different currents are both shown to be in good agreement with the predictions of the nonlinear thermomechanical model. This underscores the need to consider nonlinearities when modeling the response of SU8 thermal actuators. 2015-0087]
Resumo:
In this paper, we study the Einstein relation for the diffusivity to mobility ratio (DMR) in n-channel inversion layers of non-linear optical materials on the basis of a newly formulated electron dispersion relation by considering their special properties within the frame work of k.p formalism. The results for the n-channel inversion layers of III-V, ternary and quaternary materials form a special case of our generalized analysis. The DMR for n-channel inversion layers of II-VI, IV-VI and stressed materials has been investigated by formulating the respective 2D electron dispersion laws. It has been found, taking n-channel inversion layers of CdGeAs2, Cd(3)AS(2), InAs, InSb, Hg1-xCdxTe, In1-xGaxAsyP1-y lattice matched to InP, CdS, PbTe, PbSnTe, Pb1-xSnxSe and stressed InSb as examples, that the DMR increases with the increasing surface electric field with different numerical values and the nature of the variations are totally band structure dependent. The well-known expression of the DMR for wide gap materials has been obtained as a special case under certain limiting conditions and this compatibility is an indirect test for our generalized formalism. Besides, an experimental method of determining the 2D DMR for n-channel inversion layers having arbitrary dispersion laws has been suggested.
Resumo:
The present work focuses on simulation of nonlinear mechanical behaviors of adhesively bonded DLS (double lap shear) joints for variable extension rates and temperatures using the implicit ABAQUS solver. Load-displacement curves of DLS joints at nine combinations of extension rates and environmental temperatures are initially obtained by conducting tensile tests in a UTM. The joint specimens are made from dual phase (DP) steel coupons bonded with a rubber-toughened adhesive. It is shown that the shell-solid model of a DLS joint, in which substrates are modeled with shell elements and adhesive with solid elements, can effectively predict the mechanical behavior of the joint. Exponent Drucker-Prager or Von Mises yield criterion together with nonlinear isotropic hardening is used for the simulation of DLS joint tests. It has been found that at a low temperature (-20 degrees C), both Von Mises and exponent Drucker-Prager criteria give close prediction of experimental load-extension curves. However. at a high temperature (82 degrees C), Von Mises condition tends to yield a perceptibly softer joint behavior, while the corresponding response obtained using exponent Drucker-Prager criterion is much closer to the experimental load-displacement curve.
Resumo:
A continuum method of analysis is presented in this paper for the problem of a smooth rigid pin in a finite composite plate subjected to uniaxial loading. The pin could be of interference, push or clearance fit. The plate is idealized to an orthotropic sheet. As the load on the plate is progressively increased, the contact along the pin-hole interface is partial above certain load levels in all three types of fit. In misfit pins (interference or clearance), such situations result in mixed boundary value problems with moving boundaries and in all of them the arc of contact and the stress and displacement fields vary nonlinearly with the applied load. In infinite domains similar problems were analysed earlier by ‘inverse formulation’ and, now, the same approach is selected for finite plates. Finite outer domains introduce analytical complexities in the satisfaction of boundary conditions. These problems are circumvented by adopting a method in which the successive integrals of boundary error functions are equated to zero. Numerical results are presented which bring out the effects of the rectangular geometry and the orthotropic property of the plate. The present solutions are the first step towards the development of special finite elements for fastener joints.
Resumo:
We study the renormalization group flows of the two terminal conductance of a superconducting junction of two Luttinger liquid wires. We compute the power laws associated with the renormalization group flow around the various fixed points of this system using the generators of the SU(4) group to generate the appropriate parametrization of an matrix representing small deviations from a given fixed point matrix [obtained earlier in S. Das, S. Rao, and A. Saha, Phys. Rev. B 77, 155418 (2008)], and we then perform a comprehensive stability analysis. In particular, for the nontrivial fixed point which has intermediate values of transmission, reflection, Andreev reflection, and crossed Andreev reflection, we show that there are eleven independent directions in which the system can be perturbed, which are relevant or irrelevant, and five directions which are marginal. We obtain power laws associated with these relevant and irrelevant perturbations. Unlike the case of the two-wire charge-conserving junction, here we show that there are power laws which are nonlinear functions of V(0) and V(2kF) [where V(k) represents the Fourier transform of the interelectron interaction potential at momentum k]. We also obtain the power law dependence of linear response conductance on voltage bias or temperature around this fixed point.
Resumo:
The anharmonic oscillator under combined sinusoidal and white noise excitation is studied using the Gaussian closure approximation. The mean response and the steady-state variance of the system is obtained by the WKBJ approximation and also by the Fokker Planck equation. The multiple steadystate solutions are obtained and their stability analysis is presented. Numerical results are obtained for a particular set of system parameters. The theoretical results are compared with a digital simulation study to bring out the usefulness of the present approximate theory.
Resumo:
We computed Higuchi's fractal dimension (FD) of resting, eyes closed EEG recorded from 30 scalp locations in 18 male neuroleptic-naive, recent-onset schizophrenia (NRS) subjects and 15 male healthy control (HC) subjects, who were group-matched for age. Schizophrenia patients showed a diffuse reduction of FD except in the bilateral temporal and occipital regions, with the reduction being most prominent bifrontally. The positive symptom (PS) schizophrenia subjects showed FD values similar to or even higher than HC in the bilateral temporo-occipital regions, along with a co-existent bifrontal FD reduction as noted in the overall sample of NRS. In contrast, this increase in FD values in the bilateral temporo-occipital region was absent in the negative symptom (NS) subgroup. The regional differences in complexity suggested by these findings may reflect the aberrant brain dynamics underlying the pathophysiology of schizophrenia and its symptom dimensions. Higuchi's method of measuring FD directly in the time domain provides an alternative for the more computationally intensive nonlinear methods of estimating EEG complexity.
Resumo:
Interference fits are used extensively in aircraft structural joints because of their improved fatigue performance. Recent advances in analysis of these joints have increased understanding of the nonlinear load-contact and load-interfacial slip variations in these joints. Experimental work in these problems is lacking due to difficulties in determining partial contact and partial slip along the pin-hole interface. In this paper, an experimental procedure is enumerated for determining load-contact relations in interference/clearance fits, using photoelastic models and applying a technique for detecting progress of separation/contact up to predetermined locations. The study incorporates a detailed procedure for model making, controlling interference, locating break of contact up to known locations around the interface, estimating optically the degree of interference, determining interfacial friction and evaluating stresses in the sheet. Experiments, simulating joints in large sheets, were carried out under both pin and plate loads. The present studies provide load-separation behavior in interference joint with finite interfacial friction.
Resumo:
In this paper a study of the free, forced and self-excited vibrations of non-linear, two degrees of freedom systems is reported. The responses are obtained by linearizing the nonlinear equations using the weighted mean square linearization approach. The scope of this approach, in terms of the type of non-linearities the method can tackle, is also discussed.
Resumo:
In this paper a study of the free, forced and self-excited vibrations of non-linear, two degrees of freedom systems is reported. The responses are obtained by linearizing the nonlinear equations using the weighted mean square linearization approach. The scope of this approach, in terms of the type of non-linearities the method can tackle, is also discussed.
Resumo:
The decay of sound in a rectangular room is analyzed for various boundary conditions on one of its walls. It is shown that the decay of the sound-intensity level is in general nonlinear. But for specific areas and impedances of the material it is possible to obtain a linear initial decay. It is also shown that the coefficients derived from the initial decay rates neither correspond to the predictions of Sabine's or Eyring's geometrical theories nor to the normal coefficients of Morse's wave theory. The dependence of the coefficients on the area of the material is discussed. The influence of the real and the imaginary parts of the specific acoustic impedance of the material on the coefficients is also discussed. Finally, the existence of a linear initial decay corresponding to the decay of a diffuse field in the case of a highly absorbing material partially covering a wall is explained on the basis of modal coupling.