148 resultados para Jet helicopters.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that in studies of light quark- and gluon-initiated jet discrimination, it is important to include the information on softer reconstructed jets (associated jets) around a primary hard jet. This is particularly relevant while adopting a small radius parameter for reconstructing hadronic jets. The probability of having an associated jet as a function of the primary jet transverse momentum (PT) and radius, the minimum associated jet pi, and the association radius is computed up to next-to-double logarithmic accuracy (NDLA), and the predictions are compared with results from Herwig++, Pythia6 and Pythia8 Monte Carlos (MC). We demonstrate the improvement in quark-gluon discrimination on using the associated jet rate variable with the help of a multivariate analysis. The associated jet rates are found to be only mildly sensitive to the choice of parton shower and hadronization algorithms, as well as to the effects of initial state radiation and underlying event. In addition, the number of k(t) subjets of an anti-k(t) jet is found to be an observable that leads to a rather uniform prediction across different MC's, broadly being in agreement with predictions in NDLA, as compared to the often used number of charged tracks observable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider sound source mechanisms involving the acoustic and instability modes of dual-stream isothermal supersonic jets with the inner nozzle buried within an outer shroud-like nozzle. A particular focus is scattering into radiating sound waves at the shroud lip. For such jets, several families of acoustically coupled instability waves exist, beyond the regular vortical Kelvin-Helmholtz mode, with different shapes and propagation characteristics, which can therefore affect the character of the radiated sound. In our model, the coaxial shear layers are vortex sheets while the incident acoustic disturbances are the propagating shroud modes. The Wiener-Hopf method is used to compute their scattering at the sharp shroud edge to obtain the far-field radiation. The resulting far-field directivity quantifies the acoustic efficiency of different mechanisms, which is particularly important in the upstream direction, where the results show that the scattered sound is more intense than that radiated directly by the shear-layer modes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using high-resolution 3D and 2D (axisymmetric) hydrodynamic simulations in spherical geometry, we study the evolution of cool cluster cores heated by feedback-driven bipolar active galactic nuclei (AGNs) jets. Condensation of cold gas, and the consequent enhanced accretion, is required for AGN feedback to balance radiative cooling with reasonable efficiencies, and to match the observed cool core properties. A feedback efficiency (mechanical luminosity approximate to epsilon(M) over dot(acc)c(2); where (M) over dot(acc). is the mass accretion rate at 1 kpc) as small as 6 x 10(-5) is sufficient to reduce the cooling/accretion rate by similar to 10 compared to a pure cooling flow in clusters (with M-200 less than or similar to 7 x 10(14) M-circle dot). This value is much smaller compared to the ones considered earlier, and is consistent with the jet efficiency and the fact that only a small fraction of gas at 1 kpc is accreted onto the supermassive black hole (SMBH). The feedback efficiency in earlier works was so high that the cluster core reached equilibrium in a hot state without much precipitation, unlike what is observed in cool-core clusters. We find hysteresis cycles in all our simulations with cold mode feedback: condensation of cold gas when the ratio of the cooling-time to the free-fall time (t(cool)/t(ff)) is less than or similar to 10 leads to a sudden enhancement in the accretion rate; a large accretion rate causes strong jets and overheating of the hot intracluster medium such that t(cool)/t(ff) > 10; further condensation of cold gas is suppressed and the accretion rate falls, leading to slow cooling of the core and condensation of cold gas, restarting the cycle. Therefore, there is a spread in core properties, such as the jet power, accretion rate, for the same value of core entropy t(cool)/t(ff). A smaller number of cycles is observed for higher efficiencies and for lower mass halos because the core is overheated to a longer cooling time. The 3D simulations show the formation of a few-kpc scale, rotationally supported, massive (similar to 10(11) M-circle dot) cold gas torus. Since the torus gas is not accreted onto the SMBH, it is largely decoupled from the feedback cycle. The radially dominant cold gas (T < 5 x 10(4) K; vertical bar v(r)vertical bar >vertical bar v(phi vertical bar)) consists of fast cold gas uplifted by AGN jets and freely infalling cold gas condensing out of the core. The radially dominant cold gas extends out to 25 kpc for the fiducial run (halo mass 7 x 10(14) M-circle dot and feedback efficiency 6 x 10(-5)), with the average mass inflow rate dominating the outflow rate by a factor of approximate to 2. We compare our simulation results with recent observations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tropical easterly jet (TEJ) is a prominent atmospheric circulation feature observed during the Asian summer monsoon. It is generally assumed that sensible heating over the Tibetan Plateau directly influences the location of the TEJ. However, other studies have suggested the importance of latent heating in determining the jet location. In this paper, the relative importance of latent heating on the maintenance of the TEJ is explored through simulations with a general circulation model. The simulation of the TEJ by the Community Atmosphere Model, version 3.1 is discussed in detail. These simulations showed that the location of the TEJ is well correlated with the location of the precipitation. Significant zonal shifts in the location of the precipitation resulted in similar shifts in the zonal location of the TEJ. These zonal shifts had minimal effect on the large-scale structure of the jet. Further, provided that precipitation patterns were relatively unchanged, orography did not directly impact the location of the TEJ. These changes were robust even with changes in the cumulus parameterization. This suggests the potential important role of latent heating in determining the location and structure of the TEJ. These results were used to explain the significant differences in the zonal location of the TEJ in the years 1988 and 2002. To understand the contribution of the latitudinal location of latent heating on the strength of the TEJ, aqua-planet simulations were carried out. It has been shown that for similar amounts of net latent heating, the jet is stronger when heating is in the higher tropical latitudes. This may partly explain the reason for the jet to be very strong during the JJA monsoon season.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The work studies the extent of asymmetric flow in water models of continuous casting molds of two different configurations. In the molds where fluid is discharged through multiple holes at the bottom, the flow pattern in the lower portion depends on the size of the lower two recirculating domains. If they reach the mold bottom, the flow pattern in the lower portion is symmetrical about the central plane; otherwise, it is asymmetrical. On the other hand, in the molds where the fluid is discharged through the entire mold cross section, the flow pattern is always asymmetrical if the aspect ratio is 1:6.25 or more. The fluid jet swirls while emerging through the nozzle. The interaction of the swirling Jets with the wide sidewalls of the mold gives rise to asymmetrical flow inside the mold. In the molds with lower aspect ratios, where the jets do not touch the wide side walls, the flow pattern is symmetrical about the central plane.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents the results of laboratory investigation carried out on Ahmedabad sand on the liquefaction and pore water pressure generation during strain controled cyclic loading. Laboratory experiments were carried out on representative natural sand samples (base sand) collected from earthquake-affected area of Ahmedabad City of Gujarat State in India. A series of strain controled cyclic triaxial tests were carried out on isotropically compressed samples to study the influence of different parameters such as shear strain amplitude, initial effective confining pressure, relative density and percentage of non-plastic fines on the behavior of liquefaction and pore water pressure generation. It has been observed from the laboratory investigation that the potential for liquefaction of the sandy soils depends on the shear strain amplitude, initial relative density, initial effective confining pressure and non-plastic fines. In addition, an empirical relationship between pore pressure ratio and cycle ratio independent of the number of cycles of loading, relative density, confining pressure, amplitude of shear strain and non-plastic fines has been proposed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A finite-state wake model is used to investigate aeromechanical stability of hingeless-rotor helicopters in the ground-contact, hover and trimmed-night conditions. The investigation covers three items: (1) the convergence of the damping with increasing number of wake harmonics for the lag regressing, and body pitch and roll modes; (2) a parametric study of the damping over a range of thrust level, advance ratio and number of blades; and (3) correlations, primarily with the damping and frequency measurements of these lag and body modes. The convergence and parametric studies are conducted in the hover and trimmed-flight conditions; they include predictions from the widely used dynamic inflow model. The correlations are conducted in the ground-contact conditions and include predictions from the dynamic inflow and vortex models; recently, this vortex model is proposed for the axial-flight conditions and is used to investigate the coupled free vibrations of rotor flapping and body modes. The convergence and parametric studies show that a finite-state wake model that goes well beyond the dynamic inflow model is required for fairly converged damping, Moreover, the correlations from the finite-state wake, dynamic inflow and vortex models are generally satisfactory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents experimental and computational results of oxy-fuel burner operating on classical flame and lameless mode for heat release rate of 26 kW/m3. The uniqueness of the burner arises from a slight asymmetric injection of oxygen at near sonic velocities. Measurements of emperature, species, total heat flux, radiative heat flux and NOx emission were carried out inside the furnace and the flow field was computationally analyzed. The flame studies were carried out for coaxial flow of oxygen and fuel jets with similar inlet velocities. This configuration results in slow mixing between fuel and oxygen and the flame is developed at distance away from the burner and the flame is bright/white in colour. In the flameless mode a slight asymmetric injection of the high velocity oxygen jet leads to a large asymmetric recirculation pattern with the recirculation ratio of 25 and the resulting flame is weak bluish in colour with little soot and acetylene formation. The classical flame in comparison is characterised by soot and acetylene formation, higher NOx and noise generation. The distribution of temperature and heat flux in the furnace is more uniform with flameless mode than with flame mode.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The heat and mass transfer for unsteady laminar compressible boundary-layer flow, which is asymmetric with respect to a 3-dimensional stagnation point (i.e. for a jet incident at an angle on the body), have been studied. It is assumed that the free-stream velocity, wall temperature, and surface mass transfer vary arbitrarily with time and also that the gas has variable properties. The solution in the neighbourhood of the stagnation point has been obtained by series expansion in the longitudinal distance. The resulting partial differential equations have been solved numerically using an implicit finite-difference scheme. The results show that, in contrast with the symmetric flow, the maximum heat transfer does not occur at the stagnation point. The skin-friction and heat-transfer components due to asymmetric flow are only weakly affected by the mass transfer as compared to those components associated with symmetric flow. The variation of the wall temperature with time has a strong effect on the heat transfer component associated with the symmetric part of the flow. The skin friction and heat transfer are strongly affected by the variation of the density-viscosity product across the boundary layer. The skin friction responds more to the fluctuations of the free stream oscillating velocities than the heat transfer. The results have been compared with the available results and they are found to be in excellent agreement.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent laboratory investigations have shown that rotation and (streamwise) curvature can have spectacular effects on momentum transport in turbulent shear flows. A simple model that takes account of these effects (based on an analogy with buoyant flows) utilises counterparts of the Richardson number Rg and the Monin-Oboukhov length. Estimates of Rg for meanders in ocean currents like the Gulf Stream show it to be of order 1 or more, while laboratory investigations reveal strong effects even at |Rg|∼0·1. These considerations lead to the conclusion that at a cyclonic bend in the Gulf Stream, a highly unstable flow in the outer half of the jet rides over a highly stable flow in the inner half. It is conjectured that the discrepancies noticed between observation and the various theories of Gulf Stream meanders, and such phenomena as the observed detachment of eddies from the Gulf Stream, may be due to the effects of curvature and rotation on turbulent transport.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experimental investigations are carried out in the IISc hypersonic shock tunnel on film cooling effectiveness of a single jet (diameter 2 mm and 0.9 mm), and an array forward facing of micro-jets (diameter 300 mu m each) of same effective area (corresponding to the respective single jet). The single jet and the corresponding micro-jets are injected from the stagnation zone of a blunt cone model (58, apex angle and nose radius of 35 mm). Nitrogen and Helium are injected as coolant gases. Experiments are performed at freestream Mach number 5.9, at 0 degrees angle of attack, with a stagnation enthalpy of 1.84 MJ/kg, with and without injections. The ratios of the jet stagnation pressure to the freestream pitot pressure used in the present study are 1.2 and 1.45. Up to 50% reduction in surface heat transfer rate was observed with the array of micro-jets, compared to that of the respective single jet with nitrogen as the coolant, while the corresponding eduction was up to 37% for helium injection, with the schlieren flow visualizations showing no major change in the shock standoff distance, and thus no major changes in other aerodynamic aspects such as drag.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Non-linear natural vibration characteristics and the dynamic response of hingeless and fully articulated rotors of rectangular cross-section are studied by using the finite element method. In the formulation of response problems, the global variables are augmented with appropriate additional variables, facilitating direct determination of sub-harmonic response. Numerical results are given showing the effect of the geometric non-linearity on the first three natural frequencies. Response analysis of typical rotors indicates a possibility of substantial sub-harmonic response especially in the fully articulated rotors widely adopted in helicopters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

THE PROCESS of mass transfer from saturated porous surfaces virtual origin ; exposed to turbulent air streams finds many practical applitransverse coordinate; cations. In many cases, the air stream will be in the form of a height of nozzle above flat plate--radial wall jet; wall jet over the porous surface. The aerodynamics of both plane and radial wall jets have been investigated in detail and a vast amount of literature is available on the subject [l-3].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Single pulse shock tube facility has been developed in the High Temperature Chemical Kinetics Lab, Aerospace Engineering Department, to carry out ignition delay studies and spectroscopic investigations of hydrocarbon fuels. Our main emphasis is on measuring ignition delay through pressure rise and by monitoring CH emission for various jet fuels and finding suitable additives for reducing the delay. Initially the shock tube was tested and calibrated by measuring the ignition delay of C2H6-O2 mixture. The results are in good agreement with earlier published works. Ignition times of exo-tetrahdyrodicyclopentadiene (C10H16), which is a leading candidate fuel for scramjet propulsion has been studied in the reflected shock region in the temperature range 1250 - 1750 K with and without adding Triethylamine (TEA). Addition of TEA results in substantial reduction of ignition delay of C10H16.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The opposed-jet diffusion flame has been considered with four step reaction kinetics for hydrogenoxygen system. The studies have revealed that the flame broadening reduces and maximum temperature increases as pressure increases. The relative importance of different reaction steps have been brought out in different regions (unstable, near extinction and equilibrium). The present studies have also led to the deduction of the oveall reaction rate constants of an equivalent single step reaction using matching of a certain overall set of parameters for four step reaction scheme and equivalent single step reaction.