200 resultados para Instructional Materials


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A brief survey of the historical development of a photoelectrochemical solar cell is given. The principle and future of solar chargeable battery is compared with a wet and a dry type photovoltaic cell. A solar chargeable battery, with or without a membrane and with an aqueous solution or with solid-state electrolytes is discussed. A new unique type of configuration “Sharon-Schottky” junction solar cell is described which can be used either as a charger for any secondary batteries or could be used for photoelectrolysis of water. All these configurations and their relative merits are discussed. A review on the various semiconductors and types of solar chargeable batteries is made. Finally, a conclusion is drawn for future direction of research for developing an economically viable photoelectrochemical (PEC) solar cell based on either the principle of a solar charger (to charge a Ni---Cd battery or lead—acid battery) and/or solar chargeable battery with or without without a membrane. Some new innovative ideas for the preparation of materials is discussed. The entire discussion is geared towards answering a relevant question: what has gone wrong to result in the stagnation and failure in commercialization of a PEC based solar cell?

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hybrid frictional-kinetic equations are used to predict the velocity, grain temperature, and stress fields in hoppers. A suitable choice of dimensionless variables permits the pseudo-thermal energy balance to be decoupled from the momentum balance. These balances contain a small parameter, which is analogous to a reciprocal Reynolds number. Hence an approximate semi-analytical solution is constructed using perturbation methods. The energy balance is solved using the method of matched asymptotic expansions. The effect of heat conduction is confined to a very thin boundary layer near the exit, where it causes a marginal change in the temperature. Outside this layer, the temperature T increases rapidly as the radial coordinate r decreases. In particular, the conduction-free energy balance yields an asymptotic solution, valid for small values of r, of the form T proportional r-4. There is a corresponding increase in the kinetic stresses, which attain their maximum values at the hopper exit. The momentum balance is solved by a regular perturbation method. The contribution of the kinetic stresses is important only in a small region near the exit, where the frictional stresses tend to zero. Therefore, the discharge rate is only about 2.3% lower than the frictional value, for typical parameter values. As in the frictional case, the discharge rate for deep hoppers is found to be independent of the head of material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

C21H22N2045, M r = 398.5, orthorhombic, P212~21, a = 9.799 (1), b = 11.853 (1), c = 17.316(2)/~, V=2011.4A 3, Z=4, Dm=l.320, Dx=1.314Mgm -3, CuKa, A=1.5418A, Iz= 1.63 ram-1, F(000) = 840.0, T = 293 K, R = 0.055 for 1735 significant reflections. In the 1-methylthio-2- nitrovinyl moiety the C--C bond, 1.368 (7)A, is significantly longer than in ethylene, 1.336 (2)/~. The second harmonic generation (SHG) efficiency of this compound is only 0.25 of the urea standard. The correlation between the molecular packing and SHG is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study of the correlations between material properties and normalized erosion resistance (inverse of erosion rates) of various materials tested in the rotating disk and the flow venturi at various intensities indicates that different individual properties influence different stages of erosion. At high and low intensities of erosion, energy properties predominate the phenomenon, whereas at intermediate intensities strength and acoustic properties become more significant. However, both strength and energy properties are significant in the correlations for the entire spectrum of erosion when extensive cavitation and liquid impingement data from several laboratories involving different intensities and hydrodynamic conditions are considered. The use of true material properties improved the statistical parameters by 3 to 37%, depending on the intensity of erosion. It is possible to evaluate qualitatively the erosion resistances of materials based on the true stress-true strain curves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proper formulation of stress-strain relations, particularly in tension-compression situations for isotropic biomodulus materials, is an unresolved problem. Ambartsumyan's model [8] and Jones' weighted compliance matrix model [9] do not satisfy the principle of coordinate invariance. Shapiro's first stress invariant model [10] is too simple a model to describe the behavior of real materials. In fact, Rigbi [13] has raised a question about the compatibility of bimodularity with isotropy in a solid. Medri [2] has opined that linear principal strain-principal stress relations are fictitious, and warned that the bilinear approximation of uniaxial stress-strain behavior leads to ill-working bimodulus material model under combined loading. In the present work, a general bilinear constitutive model has been presented and described in biaxial principal stress plane with zonewise linear principal strain-principal stress relations. Elastic coefficients in the model are characterized based on the signs of (i) principal stresses, (ii) principal strains, and (iii) on the value of strain energy component ratio ER greater than or less than unity. The last criterion is used in tension-compression and compression-tension situations to account for different shear moduli in pure shear stress and pure shear strain states as well as unequal cross compliances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sharp increase in microwave power loss (the reverse of what has previously been reported) at the transition temperature in high-Tc superconducting systems such as YBaCu oxide (polycrystalline bulk and thin films obtained by the laser ablation technique) and BiPbSrCaCu oxide is reported. The differences between DC resistivity ( rho ) and the microwave power loss (related to microwave surface resistance) are analysed from the data obtained by a simultaneous measurement set-up. The influence of various parameters, such as preparation conditions, thickness and aging of the sample and the probing frequency (6-18 GHz), on the variation of microwave power loss with temperature is outlined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new feature-based technique is introduced to solve the nonlinear forward problem (FP) of the electrical capacitance tomography with the target application of monitoring the metal fill profile in the lost foam casting process. The new technique is based on combining a linear solution to the FP and a correction factor (CF). The CF is estimated using an artificial neural network (ANN) trained using key features extracted from the metal distribution. The CF adjusts the linear solution of the FP to account for the nonlinear effects caused by the shielding effects of the metal. This approach shows promising results and avoids the curse of dimensionality through the use of features and not the actual metal distribution to train the ANN. The ANN is trained using nine features extracted from the metal distributions as input. The expected sensors readings are generated using ANSYS software. The performance of the ANN for the training and testing data was satisfactory, with an average root-mean-square error equal to 2.2%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An organic-inorganic composite material is obtained by self-assembly of 2,3-didecyloxy-anthracene (DDOA), an organogelator of butanol, and organic-capped ZnO nanoparticles (NPs). The ligand 3, 2,3-di(6-oxy-n-hexanoic acid)-anthracene, designed to cap ZnO and interact with the DDOA nanofibers by structural similarity, improves the dispersion of the NPs into the organogel. The composite material displays mechanical properties similar to those of the pristine DDOA organogel, but gelates at a lower critical concentration and emits significantly less, even in the presence of very small amounts of ZnO NPs. The ligand 3 could also act as a relay to promote the photo-induced quenching process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemical methods of synthesis play a crucial role in designing and discovering new and novel materials and in providing less cumbersome methods for preparing known materials. Chemical methods also enable the synthesis of metastable materials which are otherwise difficult to prepare. In this presentation, the various innovative chemical methods of synthesising oxide materials will be briefly reviewed with emphasis on soft-chemical routes. Electrochemical synthesis, ion-exchange method, alkali-flux method and some of the interaction reactions will be highlighted, besides topochemical aspects of solid state synthesis. Cuprate superconductors as well as intergrowth structures will also be examined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxide materials like perovskite, zirconolite, hollandite, pyrochlore, NASICON and sphene which are used for nuclear waste immobilization have been prepared by a solution combustion process. The process involves the combustion of stoichiometric amount of corresponding metal nitrates and carbohydrazide/tetraformyl trisazine/diformyl hydrazide at 450 degrees C. The combustion products have been characterized using powder X-ray diffraction, infrared spectroscopy, and Si-29 MAS-NMR. The fine particle nature of the combustion derived powders has been studied using density, particle size, BET surface area measurements and scanning electron microscopy. Sintering of combustion derived powder yields 85-95% dense ceramics in the temperature range 1000 degrees-1300 degrees C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fine-particle NASICON materials, Na1+xZr2P3-xSixO12 (where x = 0.0, 0.5, 1.0, 1.5, 2.0 and 2.5), have been prepared by controlled combustion of an aqueous solution containing stoicthiometric amounts of sodium nitrate, zirconyl nitrate, ammonium perchlorate, diammonium hydrogen phosphate, fumed silica and carbonohydrazide. Formation of NASICON has been confirmed by powder XRD, Si-29 NMR and IR spectroscopy. These NASICON powders are fine (average agglomerate size 5-12 mum) with a surface area varying from 8 to 30 m2 g-1. NASICON powders pelletized and sintered at 1100-1200-degrees-C for 5 h achieved 90-95% theoretical density and show fine-grain microstructure. The coefficient of thermal expansion of sintered NASICON compact was measured up to 500-degrees-C and changes f rom -3.4 x 10(-6) to 4.1 x 10(-6) K-1. The conductivity of Sintered Na3Zr2PSi2O12 compact at 300-degrees-C is 0.236 OMEGA-1 cm-1.