131 resultados para Insect resistance
Resumo:
The current density-voltage (J-V) characteristics of poly(3-methylthiophene) devices show a negative differential resistance (NDR) at room temperature with a large peak to valley current ratio (similar to 507). This NDR can be tuned by two orders of magnitude by controlling the carrier density due to the variation of the space-charge region in the device. The temperature and scan rate dependent J-V measurements infer that the NDR is mainly driven by the trapping and de-trapping of carriers. The photo-generation of carriers is observed to reduce the NDR effect.
Resumo:
Negative differential resistance (NDR) in current-voltage (I-V) characteristics and apparent colossal electroresistance were observed in Gd0.5Sr0.5MnO3 single crystals at low temperatures. The continuous dc I-V measurements showed a marked thermal drift. In addition, temperature of the sample surface was found to be significantly higher than that of the base at high applied currents. Two different strategies namely estimation and diminution of the Joule heating (pulsed I-V measurements) were employed to investigate its role in the electric transport properties. Our experiments reveal that the NDR in Gd0.5Sr0.5MnO3 is a consequence of Joule heating rather than the melting of charge order. (C) 2010 American Institute of Physics. doi:10.1063/1.3486221]
Resumo:
We report a detailed investigation of resistance noise in single layer graphene films on Si/SiO2 substrates obtained by chemical vapor deposition (CVD) on copper foils. We find that noise in these systems to be rather large, and when expressed in the form of phenomenological Hooge equation, it corresponds to Hooge parameter as large as 0.1-0.5. We also find the variation in the noise magnitude with the gate voltage (or carrier density) and temperature to be surprisingly weak, which is also unlike the behavior of noise in other forms of graphene, in particular those from exfoliation. (C) 2010 American Institute of Physics. doi:10.1063/1.3493655]
Resumo:
We have derived explicitly, the large scale distribution of quantum Ohmic resistance of a disordered one-dimensional conductor. We show that in the thermodynamic limit this distribution is characterized by two independent parameters for strong disorder, leading to a two-parameter scaling theory of localization. Only in the limit of weak disorder we recover single parameter scaling, consistent with existing theoretical treatments.
Resumo:
The electrical resistance of the binary liquid system cyclohexane + acetic anhydride is measured, in the critical region, both in the pure mixture and when the mixture is doped with small amounts (≈ 100 ppm) of H2O/D2O impurities.T c was approached to aboutt=3×10−6 wheret=(T −T c )/T c . The critical exponentb ≈ 0.35 in the fit of the resistance data to the equationdR/dT ∼t −b does not seem to be affected appreciably by the impurities. There is a sign reversal ofdR/dt in the non-critical region. Binary liquid systems seem to violate the universality of the critical resistivity.
Resumo:
A study of the correlations between material properties and normalized erosion resistance (inverse of erosion rates) of various materials tested in the rotating disk and the flow venturi at various intensities indicates that different individual properties influence different stages of erosion. At high and low intensities of erosion, energy properties predominate the phenomenon, whereas at intermediate intensities strength and acoustic properties become more significant. However, both strength and energy properties are significant in the correlations for the entire spectrum of erosion when extensive cavitation and liquid impingement data from several laboratories involving different intensities and hydrodynamic conditions are considered. The use of true material properties improved the statistical parameters by 3 to 37%, depending on the intensity of erosion. It is possible to evaluate qualitatively the erosion resistances of materials based on the true stress-true strain curves.
Resumo:
The electrical resistance is measured in two binary liquid systems CS2 + CH3NO2 and n-C7H16 + CH3OH in the critical region as a function of frequency from 10 Hz to 100 kHz. The critical exponent b ≈ 0.35 in the singularity of dR/dT α (T - Tc)−b near Tc has no appreciable dependence upon the frequency. Thus any contribution from dielectric dispersion to the critical resistivity is not appreciable. The universal behaviour of the dR/dT anomaly does not seem to be followed in binary liquid systems.
Resumo:
Several methods for improving the strength of metallic materials are available and correlations between strength and various microstructural features have been established. The purpose of this paper is to review parallel developments favouring improved fracture resistance. Resistance to fracture in monotonie loading, cyclic loading and when fracture is environment-aided have been considered in steels, aluminium alloys and anisotropic materials. Finally, the question of optimising alloy behaviour is discussed.
Resumo:
Oryctes baculovirus is a viral biocide exploited for the control of the insect pest Oryctes rhinoceros. We have recently established a physical map of the genome of the Indian isolate of Oryctes baculovirus (OBV-KI). Here we examine the genomic relatedness between OBV-KI and OBV-PV505, the type isolate (originally from the Philippines), by DNA reassociation kinetics and by the use of restriction endonucleases. On the basis of differences in restriction-enzyme profiles between the two genomes, and previously reported differences in protein profiles and antigenic makeup, we propose the taxonomic status of a variant of Oryctes baculovirus for the Indian isolate.
Resumo:
A cytosine-specific DNA methyltransferase (EC 2.1.1.37) has been purified to near homogeneity from a mealybug (Planococcus lilacinus). The enzyme can methylate cytosine residues in CpG sequences as well as CpA sequences. The apparent molecular weight of the enzyme was estimated as 135,000 daltons by FPLC. The enzyme exhibits a processive mode of action and a salt dependance similar to mammalian methylases. Mealybug methylase exhibits a preference for denatured DNA substrates.
Resumo:
Grinding media wear appears to be non-linear with the time of grinding in a laboratory-scale ball mill. The kinetics of wear can be expressed as a power law of the type w=atb, where the numerical constant a represents wear of a particular microstructure at time t = 1 min and b is the wear exponent which is independent of the particle size prevailing inside a ball mill at any instant of time of grinding. The wear exponent appears to be an indicator of the cutting wear mechanism in dry grinding: a plot of the inverse of the normalised wear exponent (Image ) versusHs (where Hs is the worn surface hardness of the media) yields a curve similar to that of a wear resistance plot obtained in the case of two-body sliding abrasive wear. This method of evaluating the cutting wear resistance of media is demonstrated by employing 15 different microstructures of AISI-SAE 52100 steel balls in dry grinding of quartz in a laboratory-scale ball mill.
Resumo:
Three distinct mechanisms — sliding, bonding and bearing — for the mobilisation of interfacial friction have been identified. In the light of these mechanisms, the effect of variation in reinforcement parameters, such as extensibility, flexibility and hardness on mobilisation of interfacial friction, and the mechanisms themselves has been examined. The influence of boundary effects of apparatus on the interfacial friction has been discussed and a method of estimating the same in a pull-out box has been proposed.
Resumo:
The higher levels of cytochrone P-450 dependent enzyme activities reported earlier are traced to higher levels of cytochrome P-450 (CYPIIB1/B2 like) messenger RNA in the chloroquine resistant than the sensitive strains. The messenger RNA is also induced by phenobarbitone in the sensitive strain. Pretreatment with phenobarbitone affords partial protection to chloroquine toxicity in the sensitive strain and this is not due to a differential accumulation of the drug.
Resumo:
This paper describes the electrical contact resistance (ECR) measurements made on thin gold plated (gold plating of <= 0.5 mu m with a Ni underlayer of similar to 2 mu m) oxygen free high conductivity (OFHC) Cu contacts in vacuum environment. ECR in gold plated OFHC Cu contacts is found to be slightly higher than that in bare OFHC Cu contacts. Even though gold is a softer material than copper, the relatively high ECR values observed in gold plated contacts are mainly due to the higher hardness and electrical resistivity of the underlying Ni layer. It is well known that ECR is directly related to plating factor, which increases with increasing coating thickness when the electrical resistivity of coating material is more than that of substrate. Surprisingly, in the present case it is found that the ECR decreases with increasing gold layer thickness on OFHC Cu substrate (gold has higher electrical resistivity than OFHC Cu). It is analytically demonstrated from the topography and microhardness measurements results that this peculiar behavior is associated with thin gold platings, where the changes in surface roughness and microhardness with increasing layer thickness overshadow the effect of plating factor on ECR.