135 resultados para Hemoglobin Degradation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several samples of poly(vinyl formal) having the same vinyl alcohol content (8–9%) but varying contents of vinyl acetate (6–22%) and vinyl formol (70–85%) were prepared and subjected to thermogravimetric analysis, in air and nitrogen atmospheres, employing both isothermal and dynamic methods. Kinetic parameters determined from both the isothermal and dynamic TGA data are compared. The activation energy is seen to be largely dependent on the degree of conversion, implying a complex degradation reaction. The activation energy is also much less for degradation in air than in nitrogen, which can be explained by a reaction with oxygen-producing structures favoring degradation. The activation energy is less sensitive to variation in polymer composition for degradation in air than in nitrogen. Thus, in the dynamic process, the activation energy value decreases (from 36 to 23 kcal/mole) with increasing acetate content (from 6 to 22%) in nitrogen atmosphere, while in air the activation energy value increases only moderately (from 21 to 27 kcal/mole) with increasing acetate content (from 6 to 22%). The order of reaction is nearly unity, irrespective of the composition of the polymer, both in air and nitrogen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechano-chemical degradation of poly(methyl methacrylate) (PMMA), poly(ethyl methacrylate) (PEMA) and poly(n-butyl methacrylate) (PBMA) using ultrasound (US), ultraviolet (UV) radiation and a photoinitiator (benzoin) has been investigated. The degradation of the polymers was monitored using the reduction in number average molecular weight (M-n) and polydispersity (PDI). A degradation mechanism that included the decomposition of the initiator, generation of polymer radicals by the hydrogen abstraction of initiator radicals, reversible chain transfer between stable polymer and polymer radicals was proposed. The mechanism assumed mid-point chain scission due to US and random scission due to UV radiation. A series of experiments with different initial M-n of the polymers were performed and the results indicated that, irrespective of the initial PDI, the PDI during the sono-photooxidative degradation evolved to a steady state value of 1.6 +/- 0.05 for all the polymers. This steady state evolution of PDI was successfully predicted by the continuous distribution kinetics model. The rate coefficients of polymer scission due to US and UV exhibited a linear increase and decrease with the size of the alkyl group of the poly(alkyl methacrylate)s, respectively. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An oxidative pathway hitherto unknown for tile degradation of a sesquiterpene alcohol, nerolidol (I) by Alcaligenes eutrophus is presented. Fermentation of nerolidol (I) by this organism in a mineral salts medium resulted in the formation of geranylacetone (II) and an optically active alcohol (S)-(+)-geranylacetol (III), as major metabolites. Nerolidol (I) induced cells readily transformed 1,2-epoxynerolidol (IV) and 1,2-dihydroxynerolidol (V) into geranylacetone (II). These cells also exhibited their ability to carry out stereospecific reduction of II into (S)-(+)-geranylacetol (III). Oxygen uptake studies clearly indicated that nerolidol induced cells oxidized compounds II, III, IV, V and ethyleneglycol. Based on these observations a new oxidative pathway for the degradation of I is suggested which envisages the epoxidation of the terminal double bond, opening of the epoxide and cleavage between C-2 and C-3 in a manner similar to the periodate oxidation of diol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sharp increase in microwave power loss (the reverse of what has previously been reported) at the transition temperature in high-Tc superconducting systems such as YBaCu oxide (polycrystalline bulk and thin films obtained by the laser ablation technique) and BiPbSrCaCu oxide is reported. The differences between DC resistivity ( rho ) and the microwave power loss (related to microwave surface resistance) are analysed from the data obtained by a simultaneous measurement set-up. The influence of various parameters, such as preparation conditions, thickness and aging of the sample and the probing frequency (6-18 GHz), on the variation of microwave power loss with temperature is outlined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymers containing group VIA derived weak links, viz. poly(styrene disulfide) (PSD), poly- (styrene tetrasulfide) (PST), and poly(styrene diselenide) (PSDSE), have been synthesized. The polymers PSD and PST were characterized by NMR, IR, UV, TGA, and fast atom bombardment m w spectrometric (FABMS) techniques. The presence of different configurational sequences in PSD and PST were identified by *3C NMR spectroscopy. PSDSE, being insoluble in common organic solvents, was characterized using solid-state lac NMR (CP-MAS) spectroscopy. Thermal degradation of polymers under direct pyrolysis-mass spectrometric (DP-MS) conditions revealed that all the polymers undergo degradation through the weaklink scission. A comparative study of the pyrolysis products of these polymers with that of poly(styrene peroxide) (PSP) revealed a smooth transformation down the group with no monomer (styrene or oxygen) formation in PSP to only styrene and selenium metal in PSDSE. This trend of group VIA is explained from the energetics of the C-X bond (X = 0, S, and Se) which also seems to be important in addition to the weak X-X bond cleavage. In PSP and PSD, the behavior is also explained from the energetics of the alkoxy and thiyl radicals. The unique exothermic degradation in PSP compared to endothermic degradation in PSD and PSDSE is explained from the nature of the producta of degradation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present research work reports the eosin Y (EY) and fluorescein (FL) sensitized visible light degradation of phenol, 4-chlorophenol (CP), 2,4-dichlorophenol (DCP) and 2,4,6-trichlorophenol (TCP) using combustion synthesized nano-TiO2 (CS TiO2). The rate of degradation of the phenolic compounds was higher in the presence of EY/CS TiO2 compared to FL/CS TiO2 system. A detailed mechanism of sensitized degradation was proposed and a mechanistic model for the rate of degradation of the phenolic compound was derived using the pyramidal network reduction technique. It was found that at low initial dye concentrations, the rate of degradation of the phenolic compound is first order in the concentration of the dye, while at high initial dye concentrations, the rate is first order in the concentration of the phenolic compound. The order of degradation of the different phenolic compounds follows: CP > TCP > DCP > phenol. The different phenolic and dye intermediates that were formed during the degradation were identified by liquid chromatography-mass spectrometry (LC-MS) and the most probable pathway of degradation is proposed. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pseudomonas cepacia CSV90 is able to utilize 2,4-dichlorophenoxyacetate (2,4-D) and 2-methyl-4-chlorophenoxyacetate as sole sources of carbon and energy. Mutants of the strain CSV90 which had lost this ability appeared spontaneously on a nonselective medium. The wild-type strain harbored a 90-kb plasmid, pMAB1, whereas 2,4-D-negative mutants either lost the plasmid or had a 70-kb plasmid, pMAB2. The plasmid pMAB2 was found to have undergone a deletion Of a 20-kb fragment of pMAB1. The plasmid-free mutants regained the ability to degrade 2,4-D after introduction of purified pMAB1 by electroporation. Cloning in Escherichia coli of a 10-kb BamHI fragment from pMAB1, the region absent in pMAB2, resulted in the expression of the gene tfdC encoding 3,5-dichlorocatechol 1,2-dioxygenase. After subcloning, the tfdC gene was located in a 1.6-kb HindIII fragment. The nucleotide sequence of the tfdC gene and the restriction map of its contiguous region are identical to those of the well-characterized 2,4-D-degradative plasmid pJP4 of Alcaligenes eutrophus, whereas the overall restriction maps of the two plasmids are different. The N-terminal 44-amino-acid sequence of the enzyme purified from the strain CSV90 confirmed the reading frame in the DNA sequence for tfdC and indicated that the initiation codon GUG is read as methionine instead of valine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal degradation products of two sulfur polymers, poly(styrenedisulfide) (PSD) and poly(styrenetetrasulfide) (PST), were investigated in parallel by direct pyrolysis-mass spectrometry (DPMS) and by flash pyrolysis-GC/MS (Py-GC/MS). The time-scale of the two pyrolysis techniques is quite different, and therefore they were able to detect significantly different products in the pyrolysis of PSD and PST because of the thermal lability of sulfur-containing compounds. However, the results obtained are not contradictory, and satisfactory mechanisms for the thermal degradation of PSD and PST have been derived from the overall evidence available. Pyrolysis compounds containing sulfur, styrene, and a number of cyclic styrene sulfides and diphenyldithianes have been observed by DPMS. However, in flash pyrolysis-GC/MS, styrene, sulfur, only one cyclic styrene sulfide, and two isomers of diphenylthiophene have been detected. These thiophene derivatives were indeed absent among the compounds obtained by DPMS because they were the terminal (most thermally stable) species arising from further decomposition of the cyclic styrene sulfides formed in the primary thermal degradation processes of PSD and PST.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The degradation of the dye, Orange G, was carried out in the presence of H2O2 and Pd-substituted/impregnated CeO2. The effects of pH, initial dye concentration, initial H2O2 concentration, temperature, catalyst loading, and Pd content in the catalyst on the degradation of the dye were investigated. Eight to twelve percent degradation of the dye was obtained in 1 h when the reaction was carried out in the presence of CeO2 or H2O2 or Pd-substituted/impregnated CeO2 while 17% and 97% degradation was obtained when H2O2 was used with Pd-impregnated CeO2 and Pd-substituted CeO2, respectively. This difference clearly indicated that the ionic substitution of Pd played a key role in the degradation of the dye. A mechanism for the reaction was proposed based upon the catalyst structure and the electron transfer processes that take place in the metal ion substituted system in a reducible oxide. The reaction was found to follow first order kinetics and the influence of all the parameters on the degradation kinetics was compared using the rate constants. (c) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The chemical degradation of polysulfide polymers, viz., poly(styrene disulfide), PSD, and poly(styrene tetrasulfide), PST, has been achieved using triphenylphosphine, TPP. The reaction was monitored using P-31 NMR spectroscopy. The solubility analysis of the reaction residues reveals that while PSD degrades completely, PST on the other hand, undergoes complete degradation only when the concentration of TPP is increased. Moreover, the reaction of PST with TPP occurs at room temperature whereas PSD requires a higher temperature. The reaction products were analyzed using the direct pyrolysis mass spectrometric (DP-MS) technique, and their formation has been explained through an ionic mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanosized powders of TiO2 (anatase) were prepared by the hydrothermal method, acid-medium hydrolysis or by vacuum freeze-drying of sols, and annealing at temperatures <700-degrees-C. Photocatalytic activities of these powders in the mineralization of phenol, were evaluated in comparison to that of Degussa P25. Kinetic data indicated that surface hydroxylation had a retarding effect on the degradation of phenol. Formation of stable peroxotitanium species were observed on hydroxylated powders, whereas only V(Ti)-O- hole trap centres were detected by EPR on the heat treated samples. The data supports direct hole oxidation of the substrate preadsorbed on the photocatalyst, which is otherwise blocked by surface hydroxyls.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been observed experimentally that the collective field emission from an array of Carbon Nanotubes (CNTs) exhibits fluctuation and degradation, and produces thermal spikes, resulting in electro-mechanical fatigue and failure of CNTs. Based on a new coupled multiphysics model incorporating the electron-phonon transport and thermo-electrically activated breakdown, a novel method for estimating accurately the lifetime of CNT arrays has been developed in this paper. The main results are discussed for CNT arrays during the field emission process. It is shown that the time-to-failure of CNT arrays increases with the decrease in the angle of tip orientation. This observation has important ramifications for such areas as biomedical X-ray devices using patterned films of CNTs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal degradation of poly(methyl methacrylate) (PMMA) in the presence of polysulfide polymers, namely, poly( styrene disulfide) (PSD) and poly(styrene tetrasulfide) (PST) was studied using thermogravimetry (TG) and direct pyrolysis-mass spectrometric (DP-MS) analysis. Both PSD and PST were found to stabilizethe PMMA degradation, which was explained by both radical recombination and a chain-transfer mechanism. (C) 1997 John Wiley & Sons, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new class of biodegradable copolyesters was synthesized by the catalyst-free melt condensation of sorbitol with citric acid, tartaric acid, and sebacic acid. The resulting polymers were designated as poly(sorbitol citric sebacate) p(SCS)] and poly(sorbitol tartaric sebacate) p(STS)]. The synthesized polymers were characterized by Fourier transform infrared spectroscopy, H-1-NMR spectroscopy, and differential scanning calorimetry analysis. Porous spongelike scaffolds were prepared with a salt-leaching technique and characterized with scanning electron microscopy. Tensile testing of the p(SCS) and p(STS) polymers showed that they exhibited a wide range of mechanical properties. The Young's modulus and tensile strengths of the polymers ranged from 1.06 +/- 0.12 to 462.65 +/- 34.21 MPa and from 0.45 +/- 0.04 to 20.32 +/- 2.54 MPa, respectively. In vitro degradation studies were performed on disc-shaped polymer samples. The half-life of the polymers ranged from 0.54 to 38.52 days. The percentage hydration of the polymers was in the range 9.36 +/- 1.26 to 78.25 +/- 1.91, with sol contents of 2-14%. At any given polymer composition, the Young's modulus and tensile strength of p(SCS) was higher than that of p(STS), whereas the degradation rates of p(SCS) was lower than that of p(STS). This was attributed to the structural difference between the citric and tartaric monomers and to the degree of crosslinking. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci 121: 2861-2869, 2011