282 resultados para Gaussian Distribution
Resumo:
The Gaussian probability closure technique is applied to study the random response of multidegree of freedom stochastically time varying systems under non-Gaussian excitations. Under the assumption that the response, the coefficient and the excitation processes are jointly Gaussian, deterministic equations are derived for the first two response moments. It is further shown that this technique leads to the best Gaussian estimate in a minimum mean square error sense. An example problem is solved which demonstrates the capability of this technique for handling non-linearity, stochastic system parameters and amplitude limited responses in a unified manner. Numerical results obtained through the Gaussian closure technique compare well with the exact solutions.
Resumo:
We present an analysis of the breakdown of the most probable approximation to the Mayer cluster size distribution for clusters of size comparable to the size of the system. This failure is illustrated by considering an ideal Bose gas for which exact volume dependent reducible cluster integrals are available.
Resumo:
Gaussian-beam-type solutions to the Maxwell equations are constructed by using results from relativistic front analysis, and the propagation characteristics of these beams are analyzed. The rays of geometrical optics are shown to be the trajectories of energy flow, as given by the Poynting vector. The longitudinal components of the field vectors in the direction of the beam axis, though small, are shown to be essential for a consistent description.
Resumo:
Anisotropic Gaussian Schell-model (AGSM) fields and their transformation by first-order optical systems (FOS’s) forming Sp(4,R) are studied using the generalized pencils of rays. The fact that Sp(4,R), rather than the larger group SL(4,R), is the relevant group is emphasized. A convenient geometrical picture wherein AGSM fields and FOS’s are represented, respectively, by antisymmetric second-rank tensors and de Sitter transformations in a (3+2)-dimensional space is developed. These fields are shown to separate into two qualitatively different families of orbits and the invariants over each orbit, two in number, are worked out. We also develop another geometrical picture in a (2+1)-dimensional Minkowski space suitable for the description of the action of axially symmetric FOS’s on AGSM fields, and the invariants, now seven in number, are derived. Interesting limiting cases forming coherent and quasihomogeneous fields are analyzed.
Resumo:
Magic-angle-spinning NMR has been used to study Si---O---Si bond-angle distributions associated with various structural elements, Qn, present in lithium silicate glasses of different compositions. It is shown that glasses contain a plurality of structural elements with a broad distribution of Si---O---Si bond angles, and that the width of the distribution is characteristic of a particular Qn species
Resumo:
A high level of extracellular beta-lactamase activity was detected in cultures ofMycobacterium smegmatis SN2. The extracellular distribution of the enzyme varied with growth conditions such as additional carbon source and pH of the medium. Addition of chloramphenicol tothe culture inhibited the increase in the extracellular beta-lactamase activity. Cell wall damage or autolysis may be responsible for the extracellular beta-lactamase activity.
Resumo:
We study the probability distribution of the angle by which the tangent to the trajectory rotates in the course of a plane random walk. It is shown that the determination of this distribution function can be reduced to an integral equation, which can be rigorously transformed into a differential equation of Hill's type. We derive the asymptotic distribution for very long walks.
Resumo:
It is shown that for continuum percolation with overlapping discs having a distribution of radii, the net areal density of discs at percolation threshold depends non-trivially on the distribution, and is not bounded by any finite constant. Results of a Monte Carlo simulation supporting the argument are presented.
Resumo:
A recent theoretical model developed by Imparato et al. Phys of the experimentally measured heat and work effects produced by the thermal fluctuations of single micron-sized polystyrene beads in stationary and moving optical traps has proved to be quite successful in rationalizing the observed experimental data. The model, based on the overdamped Brownian dynamics of a particle in a harmonic potential that moves at a constant speed under a time-dependent force, is used to obtain an approximate expression for the distribution of the heat dissipated by the particle at long times. In this paper, we generalize the above model to consider particle dynamics in the presence of colored noise, without passing to the overdamped limit, as a way of modeling experimental situations in which the fluctuations of the medium exhibit long-lived temporal correlations, of the kind characteristic of polymeric solutions, for instance, or of similar viscoelastic fluids. Although we have not been able to find an expression for the heat distribution itself, we do obtain exact expressions for its mean and variance, both for the static and for the moving trap cases. These moments are valid for arbitrary times and they also hold in the inertial regime, but they reduce exactly to the results of Imparato et al. in appropriate limits. DOI: 10.1103/PhysRevE.80.011118 PACS.
Resumo:
The application of Gaussian Quadrature (GQ) procedures to the evaluation of i—E curves in linear sweep voltammetry is advocated. It is shown that a high degree of precision is achieved with these methods and the values obtained through GQ are in good agreement with (and even better than) the values reported in literature by Nicholson-Shain, for example. Another welcome feature with GQ is its ability to be interpreted as an elegant, efficient analytic approximation scheme too. A comparison of the values obtained by this approach and by a recent scheme based on series approximation proposed by Oldham is made and excellent agreement is shown to exist.
Resumo:
Using analysis-by-synthesis (AbS) approach, we develop a soft decision based switched vector quantization (VQ) method for high quality and low complexity coding of wideband speech line spectral frequency (LSF) parameters. For each switching region, a low complexity transform domain split VQ (TrSVQ) is designed. The overall rate-distortion (R/D) performance optimality of new switched quantizer is addressed in the Gaussian mixture model (GMM) based parametric framework. In the AbS approach, the reduction of quantization complexity is achieved through the use of nearest neighbor (NN) TrSVQs and splitting the transform domain vector into higher number of subvectors. Compared to the current LSF quantization methods, the new method is shown to provide competitive or better trade-off between R/D performance and complexity.
Resumo:
Formal charge distributions in, and the electric dipole moments of, a few simple organogermanium compounds have been evaluated by the method of R. P. Smith et al. [J. Amer. Chem. Soc., 73(1951) 2263]. The difference between the experimental and calculated moments in the case of alkylhalogermanes is explained in terms of the pπ—dπ back bonding effect outweighing the electron releasing effect. In unsaturated compounds, the differences are attributed to possible mesmeric effects involving the expansion of the germanium valence shell.
Resumo:
The data obtained in the earlier parts of this series for the donor and acceptor end parameters of N-H. O and O-H. O hydrogen bonds have been utilised to obtain a qualitative working criterion to classify the hydrogen bonds into three categories: "very good" (VG), "moderately good" (MG) and weak (W). The general distribution curves for all the four parameters are found to be nearly of the Gaussian type. Assuming that the VG hydrogen bonds lie between 0 and ± la, MG hydrogen bonds between ± 1 and ± 2, W hydrogen bonds beyond ± 2 (where is the standard deviation), suitable cut-off limits for classifying the hydrogen bonds in the three categories have been derived. These limits are used to get VG and MG ranges for the four parameters 1 and θ (at the donor end) and ± and ± (at the acceptor end). The qualitative strength of a hydrogen bond is decided by the cumulative application of the criteria to all the four parameters. The criterion has been further applied to some practical examples in conformational studies such as α-helix and can be used for obtaining suitable location of hydrogen atoms to form good hydrogen bonds. An empirical approach to the energy of hydrogen bonds in the three categories has also been presented.