80 resultados para Energy Harvesting, Convertitori di potenza, Maximum Power Point Tracking, Applicazioni low power
Resumo:
We consider near-optimal policies for a single user transmitting on a wireless channel which minimize average queue length under average power constraint. The power is consumed in transmission of data only. We consider the case when the power used in transmission is a linear function of the data transmitted. The transmission channel may experience multipath fading. Later, we also extend these results to the multiuser case. We show that our policies can be used in a system with energy harvesting sources at the transmitter. Next we consider data users which require minimum rate guarantees. Finally we consider the system which has both data and real time users. Our policies have low computational complexity, closed form expression for mean delays and require only the mean arrival rate with no queue length information.
Resumo:
We consider a scenario in which a wireless sensor network is formed by randomly deploying n sensors to measure some spatial function over a field, with the objective of computing a function of the measurements and communicating it to an operator station. We restrict ourselves to the class of type-threshold functions (as defined in the work of Giridhar and Kumar, 2005), of which max, min, and indicator functions are important examples: our discussions are couched in terms of the max function. We view the problem as one of message-passing distributed computation over a geometric random graph. The network is assumed to be synchronous, and the sensors synchronously measure values and then collaborate to compute and deliver the function computed with these values to the operator station. Computation algorithms differ in (1) the communication topology assumed and (2) the messages that the nodes need to exchange in order to carry out the computation. The focus of our paper is to establish (in probability) scaling laws for the time and energy complexity of the distributed function computation over random wireless networks, under the assumption of centralized contention-free scheduling of packet transmissions. First, without any constraint on the computation algorithm, we establish scaling laws for the computation time and energy expenditure for one-time maximum computation. We show that for an optimal algorithm, the computation time and energy expenditure scale, respectively, as Theta(radicn/log n) and Theta(n) asymptotically as the number of sensors n rarr infin. Second, we analyze the performance of three specific computation algorithms that may be used in specific practical situations, namely, the tree algorithm, multihop transmission, and the Ripple algorithm (a type of gossip algorithm), and obtain scaling laws for the computation time and energy expenditure as n rarr infin. In particular, we show that the computation time for these algorithms scales as Theta(radicn/lo- g n), Theta(n), and Theta(radicn log n), respectively, whereas the energy expended scales as , Theta(n), Theta(radicn/log n), and Theta(radicn log n), respectively. Finally, simulation results are provided to show that our analysis indeed captures the correct scaling. The simulations also yield estimates of the constant multipliers in the scaling laws. Our analyses throughout assume a centralized optimal scheduler, and hence, our results can be viewed as providing bounds for the performance with practical distributed schedulers.
Resumo:
The ability of Static Var Compensators (SVCs) to rapidly and continuously control reactive power in response to changing system conditions can result in the improvement of system stability and also increase the power transfer in the transmission system. This paper concerns the application of strategically located SVCs to enhance the transient stability limits and the direct evaluation of the effect of these SVCs on transient stability using a Structure Preserving Energy Function (SPEF). The SVC control system can be modelled from the steady- state control characteristic to accurately simulate its effect on transient stability. Treating the SVC as a voltage-dependent reactive power load leads to the derivation of a path-independent SPEF for the SVC. Case studies on a 10-machine test system using multiple SVCs illustrate the effects of SVCs on transient stability and its accurate prediction.
Resumo:
Carbon-supported Pt-Au (Pt-Au/C) catalyst is prepared separately by impregnation, colloidal and micro-emulsion methods, and characterized by physical and electrochemical methods. Highest catalytic activity towards oxygen-reduction reaction (ORR) is exhibited by Pt-Au/C catalyst prepared by colloidal method. The optimum atomic ratio of Pt to Au in Pt-Au/C catalyst prepared by colloidal method is determined using linear-sweep and cyclic voltammetry in conjunction with cell-polarization studies. Among 3:1, 2:1 and 1:1 Pt-Au/C catalysts, (3:1) Pt-Au/C exhibits maximum electrochemical activity towards ORR. Powder X-ray diffraction pattern and transmission electron micrograph suggest Pt-Au alloy nanoparticles to be well dispersed onto the carbon-support. Energy dispersive X-ray analysis and inductively coupled plasma-optical emission spectroscopy data suggest that the atomic ratios of the alloying elements match well with the expected values. A polymer electrolyte fuel cell (PEFC) operating at 0 center dot 6 V with (3:1) Pt-Au/C cathode delivers a maximum power-density of 0 center dot 65 W/cm (2) in relation to 0 center dot 53 W/cm (2) delivered by the PEFC with pristine carbon-supported Pt cathode.
INTACTE: An Interconnect Area, Delay, and Energy Estimation Tool for Microarchitectural Explorations
Resumo:
Prior work on modeling interconnects has focused on optimizing the wire and repeater design for trading off energy and delay, and is largely based on low level circuit parameters. Hence these models are hard to use directly to make high level microarchitectural trade-offs in the initial exploration phase of a design. In this paper, we propose INTACTE, a tool that can be used by architects toget reasonably accurate interconnect area, delay, and power estimates based on a few architecture level parameters for the interconnect such as length, width (in number of bits), frequency, and latency for a specified technology and voltage. The tool uses well known models of interconnect delay and energy taking into account the wire pitch, repeater size, and spacing for a range of voltages and technologies.It then solves an optimization problem of finding the lowest energy interconnect design in terms of the low level circuit parameters, which meets the architectural constraintsgiven as inputs. In addition, the tool also provides the area, energy, and delay for a range of supply voltages and degrees of pipelining, which can be used for micro-architectural exploration of a chip. The delay and energy models used by the tool have been validated against low level circuit simulations. We discuss several potential applications of the tool and present an example of optimizing interconnect design in the context of clustered VLIW architectures. Copyright 2007 ACM.
Resumo:
We study the problem of optimal sequential (''as-you-go'') deployment of wireless relay nodes, as a person walks along a line of random length (with a known distribution). The objective is to create an impromptu multihop wireless network for connecting a packet source to be placed at the end of the line with a sink node located at the starting point, to operate in the light traffic regime. In walking from the sink towards the source, at every step, measurements yield the transmit powers required to establish links to one or more previously placed nodes. Based on these measurements, at every step, a decision is made to place a relay node, the overall system objective being to minimize a linear combination of the expected sum power (or the expected maximum power) required to deliver a packet from the source to the sink node and the expected number of relay nodes deployed. For each of these two objectives, two different relay selection strategies are considered: (i) each relay communicates with the sink via its immediate previous relay, (ii) the communication path can skip some of the deployed relays. With appropriate modeling assumptions, we formulate each of these problems as a Markov decision process (MDP). We provide the optimal policy structures for all these cases, and provide illustrations of the policies and their performance, via numerical results, for some typical parameters.
Resumo:
Single crystalline zinc oxide (ZnO) nanorod array has been used for the fabrication of CdSe/CdS/PbS/ZnO quantum dot sensitized solar cell (QDSSC). The ZnO nanorod array photoanodes are sensitized with consecutive layer of PbS, CdS and CdSe quantum dots by employing simple successive ion layer adsorption and reaction (SILAR) and chemical bath deposition (CBD) techniques. The performances of the QDSSCs are examined in detail using polysulfide electrolyte with copper sulfide (CuS) counter electrode. The combination of two successive layers of PbS with CdSe/CdS/ZnO shows an improved short circuit current density (12.223 mA cm(-2)) with a maximum power to conversion efficiency of 2.352% under 1 sun illumination. This enhancement is mainly attributed due to the better light harvesting ability of the PbS quantum dots and make large accumulation of photo-injected electrons in the conduction band of ZnO, and CdSe/CdS layers lower the recombination of photo-injected electrons with the electrolyte, these are well evidenced with the photovoltaic studies and electrochemical impedance spectroscopy. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Remote sensing of physiological parameters could be a cost effective approach to improving health care, and low-power sensors are essential for remote sensing because these sensors are often energy constrained. This paper presents a power optimized photoplethysmographic sensor interface to sense arterial oxygen saturation, a technique to dynamically trade off SNR for power during sensor operation, and a simple algorithm to choose when to acquire samples in photoplethysmography. A prototype of the proposed pulse oximeter built using commercial-off-the-shelf (COTS) components is tested on 10 adults. The dynamic adaptation techniques described reduce power consumption considerably compared to our reference implementation, and our approach is competitive to state-of-the-art implementations. The techniques presented in this paper may be applied to low-power sensor interface designs where acquiring samples is expensive in terms of power as epitomized by pulse oximetry.
Resumo:
We consider the problem of finding optimal energy sharing policies that maximize the network performance of a system comprising of multiple sensor nodes and a single energy harvesting (EH) source. Sensor nodes periodically sense the random field and generate data, which is stored in the corresponding data queues. The EH source harnesses energy from ambient energy sources and the generated energy is stored in an energy buffer. Sensor nodes receive energy for data transmission from the EH source. The EH source has to efficiently share the stored energy among the nodes to minimize the long-run average delay in data transmission. We formulate the problem of energy sharing between the nodes in the framework of average cost infinite-horizon Markov decision processes (MDPs). We develop efficient energy sharing algorithms, namely Q-learning algorithm with exploration mechanisms based on the epsilon-greedy method as well as upper confidence bound (UCB). We extend these algorithms by incorporating state and action space aggregation to tackle state-action space explosion in the MDP. We also develop a cross entropy based method that incorporates policy parameterization to find near optimal energy sharing policies. Through simulations, we show that our algorithms yield energy sharing policies that outperform the heuristic greedy method.
Resumo:
The relative energies of triangular face sharing condensed macro polyhedral carboranes: CB20H18 and C2B19H18+ derived from mono- and di-substitution of carbons in (4) B21H18- is calculated at B3LYP/6-31G* level. The relative energies, H center dot center dot center dot H non-bonding distances, NICS values, topological charge analysis and orbital overlap compatibility connotes the face sharing condensed macro polyhedral mono-carboranes, 8 (4-CB20H18) to be the lowest energy isomer. The di-carba- derivative, (36) 4,4'a-C2B19H18+ with carbons substituted in a different B-12 cage in (4) B21H18- in anti-fashion is the most stable isomer among 28 possibilities. This structure has less non-bonding H center dot center dot center dot H interaction and is in agreement with orbital-overlap compatibility, and these two have the pivotal role in deciding the stability of these clusters. An estimate of the inherent stability of these carboranes is made using near-isodesmic equations which show that CB20H18 (8) is in the realm of the possible. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Primary microcephaly (MCPH) is an autosomal-recessive congenital disorder characterized by smaller-than-normal brain size and mental retardation. MCPH is genetically heterogeneous with six known loci: MCPH1-MCPH6. We report mapping of a novel locus, MCPH7, to chromosome 1p32.3-p33 between markers D1S2797 and D1S417, corresponding to a physical distance of 8.39 Mb. Heterogeneity analysis of 24 families previously excluded from linkage to the six known MCPH loci suggested linkage of five families (20.83%) to the MCPH7 locus. In addition, four families were excluded from linkage to the MCPH7 locus as well as all of the six previously known loci, whereas the remaining 15 families could not be conclusively excluded or included. The combined maximum two-point LOD score for the linked families was 5.96 at marker D1S386 at theta = 0.0. The combined multipoint LOD score was 6.97 between markers D1S2797 and D1S417. Previously, mutations in four genes, MCPH1, CDK5RAP2, ASPM, and CENPJ, that code for centrosomal proteins have been shown to cause this disorder. Three different homozygous mutations in STIL, which codes for a pericentriolar and centrosomal protein, were identified in patients from three of the five families linked to the MCPH7 locus; all are predicted to truncate the STIL protein. Further, another recently ascertained family was homozygous for the same mutation as one of the original families. There was no evidence for a common haplotype. These results suggest that the centrosome and its associated structures are important in the control of neurogenesis in the developing human brain.
Resumo:
Polymerized carbon nanotubes (CNTs) are promising materials for polymer-based electronics and electro-mechanical sensors. The advantage of having a polymer nanolayer on CNTs widens the scope for functionalizing it in various ways for polymer electronic devices. However, in this paper, we show for the first time experimentally that, due to a resistive polymer layer having carbon nanoparticle inclusions and polymerized carbon nanotubes, an interesting dynamics can be exploited. We first show analytically that the relative change in the resistance of a single isolated semiconductive nanotube is directly proportional to the axial and torsional dynamic strains, when the strains are small, whereas, in polymerized CNTs, the viscoelasticity of the polymer and its effective electrical polarization give rise to nonlinear effects as a function of frequency and bias voltage. A simplified formula is derived to account for these effects and validated in the light of experimental results. CNT–polymer-based channels have been fabricated on a PZT substrate. Strain sensing performance of such a one-dimensional channel structure is reported. For a single frequency modulated sine pulse as input, which is common in elastic and acoustic wave-based diagnostics, imaging, microwave devices, energy harvesting, etc, the performance of the fabricated channel has been found to be promising.
Resumo:
A 10 MHz pulsed NMR spectrometer, built using mostly solid state devices, is described. The pulse programmer provides 2-pulse, 3-pulse, saturation burst and Carr-Purcell sequences both in repetitive and manual modes of operation. The transmitter has a maximum power output of ∼ 2 kW with a 75 Ω output impedance termination. The total gain of the receiver system is around 120 dB with a minimum band width of 2 MHz. The recovery time of the receiver is ∼ 7 µsec. A two-channel boxcar integrator capable of working in the single channel, differential and double boxcar modes provides signal to noise ratio improvement. The sensitivity and the linearity of the boxcar integrator are ∼ 2 mV and ∼ 0.1% respectively.
Resumo:
This paper describes a detailed study of the structure of turbulence in boundary layers along mildly curved convex and concave surfaces. The surface curvature studied corresponds to δ/Rw = ± 0·01, δ being the boundary-layer thickness and Rw the radius of curvature of the wall, taken as positive for convex and negative for concave curvature. Measurements of turbulent energy balance, autocorrelations, auto- and cross-power spectra, amplitude probability distributions and conditional correlations are reported. It is observed that even mild curvature has very strong effects on the various aspects of the turbulent structure. For example, convex curvature suppresses the diffusion of turbulent energy away from the wall, reduces drastically the integral time scales and shifts the spectral distributions of turbulent energy and Reynolds shear stress towards high wavenumbers. Exactly opposite effects, though generally of a smaller magnitude, are produced by concave wall curvature. It is also found that curvature of either sign affects the v fluctuations more strongly than the u fluctuations and that curvature effects are more significant in the outer region of the boundary layer than in the region close to the wall. The data on the conditional correlations are used to study, in detail, the mechanism of turbulent transport in curved boundary layers. (Published Online April 12 2006)
Resumo:
PURPOSE: To report the linkage analysis of retinitis pigmentosa (RP) in an Indian family. METHODS: Individuals were examined for symptoms of retinitis pigmentosa and their blood samples were withdrawn for genetic analysis. The disorder was tested for linkage to known 14 adRP and 22 arRP loci using microsatellite markers. RESULTS: Seventeen individuals including seven affecteds participated in the study. All affected individuals had typical RP. The age of onset of the disease ranged from 8-18 years. The disorder in this family segregated either as an autosomal recessive trait with pseudodominance or an autosomal dominant trait. Linkage to an autosomal recessive locus RP28 on chromosome 2p14-p15 was positive with a maximum two-point lod score of 3.96 at theta=0 for D2S380. All affected individuals were homozygous for alleles at D2S2320, D2S2397, D2S380, and D2S136. Recombination events placed the minimum critical region (MCR) for the RP28 gene in a 1.06 cM region between D2S2225 and D2S296. CONCLUSIONS : The present data confirmed linkage of arRP to the RP28 locus in a second Indian family. The RP28 locus was previously mapped to a 16 cM region between D2S1337 and D2S286 in a single Indian family. Haplotype analysis in this family has further narrowed the MCR for the RP28 locus to a 1.06 cM region between D2S2225 and D2S296. Of 15 genes reported in the MCR, 14 genes (KIAA0903, OTX1, MDH1, UGP2, VPS54, PELI1, HSPC159, FLJ20080, TRIP-Br2, SLC1A4, KIAA0582, RAB1A, ACTR2, and SPRED2) are either expressed in the eye or retina. Further study needs to be done to test which of these genes is mutated in patients with RP linked to the RP28 locus.