305 resultados para Current limiting ratio
Resumo:
The apparent thermal activation energy of 0.56 eV and the electron thermal capture cross section of 2.0 × 10-16 cm2 are measured for the gold related acceptor level in p+ nn+ silicon diodes by isothermal current transient and DLTS techniques. Using the emission and capture rate data and a degeneracy ratio of 2, the energy separation of the trap level from the conduction band is calculated and found to have the same temperature dependence as the band gap indicating that the acceptor level is pinned with respect to the valence band a t Ev + 0.637 eV.
Resumo:
We use the Lippman-Schwinger scattering theory to study nonequilibrium electron transport through an interacting open quantum dot. The two-particle current is evaluated exactly while we use perturbation theory to calculate the current when the leads are Fermi liquids at different chemical potentials. We find an interesting two-particle resonance induced by the interaction and obtain criteria to observe it when a small bias is applied across the dot. Finally, for a system without spatial inversion symmetry, we find that the two-particle current is quite different depending on whether the electrons are incident from the left or the right lead.
Resumo:
The ratio of diffusion coefficient to mobility (D/¿) for electrons has been measured in SF6-air and freon-nitrogen mixtures for various concentrations of SF6 and freon in the mixtures over the range 140¿ E/p¿ 220 V.cm-1 - torr-1. In SF6-air mixtures, the values of D/¿ were always observed to lie intermediate between the values for the pure gases. However, in freon-nitrogen mixtures, with a small concentration (10 percent) of freon in the mixture, the values of D/¿ are found to lie above the boundaries determined by the pure gases. In this mixture, over the lower E/p range (140 to 190) the electrons appear to lose a large fraction of their energy by the excitation of the complex freon molecules, while at higher E/p values (200 to 240), the excitation and consequent deexcitation of nitrogen molecules and its metastables seem to cause an increased rate of ionization of freon molecules.
Resumo:
The title-problem has been reduced to that of solving a Fredholm integral equation of the second kind. One end of the cylinder is assumed to be fixed, while the cylinder is deformed by an axial current. The vertical displacement on the upper flat end of the cylinder has been determined from an iterative solution of the Fredholm equation valid for large values of the length. The radial displacement of the curved boundary has also been determined at the middle of the cylinder, by using the iterative solution.
Resumo:
The Shifman-Vainshtein-Zakharov method of determining the eigenvalues and coupling strengths, from the operator product expansion, for the current correlation functions is studied in the nonrelativistic context, using the semiclassical expansion. The relationship between the low-lying eigenvalues, and the leading corrections to the imaginary-time Green function is elucidated by comparing systems which have almost identical spectra. In the case of an anharmonic oscillator it is found that with the procedure stated in the paper, that inclusion of more terms to the asymptotic expansion does not show any simple trend towards convergence to the exact values. Generalization to higher partial waves is given. In particular for the P-level of the oscillator, the procedure gives poorer results than for the S-level, although the ratio of the two comes out much better.
Resumo:
Among different methods, the transmission-line or the impedance tube method has been most popular for the experimental evaluation of the acoustical impedance of any termination. The current state of method involves extrapolation of the measured data to the reflecting surface or exact locations of the pressure maxima, both of which are known to be rather tricky. The present paper discusses a method which makes use of the positions of the pressure minima and the values of the standing-wave ratio at these points. Lippert's concept of enveloping curves has been extended. The use of Smith or Beranek charts, with their inherent inaccuracy, has been altogether avoided. The existing formulas for the impedance have been corrected. Incidentally, certain other errors in the current literature have also been brought to light.Subject Classification: 85.20.
Resumo:
A simple and rapid method, based on the open-circuit decay of potential, is described for the determination of the current efficiency with which metals are electrodeposited. The advantages and disadvantages of the method are discussed.
Resumo:
The paper deals with a method for the evaluation of exhaust muffers with mean flow. A new set of variables, convective pressure and convective mass velocity, have been defined to replace the acoustic variables. An expression for attenuation (insertion loss) of a muffler has been proposed in terms of convective terminal impedances and a velocity ratio, on the lines of the one existing for acoustic filters. In order to evaluate the velocity ratio in terms of convective variables, transfer matrices for various muffler elements have been derived from the basic relations of energy, mass and momentum. Finally, the velocity ratiocum-transfer matrix method is illustrated for a typical straight-through muffler.
Resumo:
Low-voltage and high-current switching delay characteristics of a simple triggered vacuum gap (TVG) are described using lead zirconate titanate as the dielectric material in the auxiliary gap. This TVG has superior performance at high currents (up to 14 kA was studied) with regard to delay, reliable firing and extended life as compared to the one using either supramica or silicon carbide. The total delay consists of three intervals: to break down the auxiliary gap, to propagate the trigger plasma and to break down the main gap. The data on the influence of the various parameters like the trigger voltage, current, energy and the main circuit energy are given. It has been found that the delay due to the first two intervals is small compared to the third.
Resumo:
Speed control of ac motors requires variable frequency, variable current, or variable voltage supply. Variable frequency supply can be obtained directly from a fixed frequency supply by using a frequency converter or from a dc source using inverters. In this paper a control technique for reference wave adaptive-current generation by modulating the inverter voltage is explained. Extension of this technique for three-phase induction-motor speed control is briefly explained. The oscillograms of the current waveforms obtained from the experimental setup are also shown.
Resumo:
We describe here a rapid, energy-efficient, green and economically scalable room temperature protocol for the synthesis of silver nanoparticles. Tannic acid, a polyphenolic compound derived from plant extracts is used as the reducing agent. Silver nanoparticles of mean size ranging from 3.3 to 22.1 nm were synthesized at room temperature by the addition of silver nitrate to tannic acid solution maintained at an alkaline pH. The mean size was tuned by varying the molar ratio of tannic acid to silver nitrate. We also present proof of concept results demonstrating its suitability for room temperature continuous flow processing.
Resumo:
This paper presents a generalized approach to design an electromagnetically coupled microstrip ring antenna for dual-band operation. By widening two opposite sides of a square ring antenna, its fractional bandwidth at the primary resonance mode can be increased significantly so that it may be used for practical applications. By attaching a stub to the inner edge of the side opposite to the feed arm, some of the losses in electrical length caused by widening can be regained. More importantly, this addition also alters the current distribution on the antenna and directs radiations at the second resonant frequency towards boresight. It has also been observed that for the dual frequency configurations studied, the ratio of the resonant frequencies (center dot r(2)center dot center dot r(1)) can range between 1.55 and 2.01. This shows flexibility in designing dual frequency antennas with a desired pair of resonant frequencies.
Resumo:
Ruthenium dioxide is deposited on stainless steel (SS) substrate by galvanostatic oxidation of Ru3+. At high current densities employed for this purpose, there is oxidation of water to oxygen, which occurs in parallel with Ru3+ oxidation. The oxygen evolution consumes a major portion of the charge. The oxygen evolution generates a high porosity to RuO2 films, which is evident from scanning electron microscopy studies. RuO2 is identified by X-ray photoelectron spectroscopy. Cyclic voltammetry and galvanostatic charge–discharge cycling studies indicate that RuO2/SS electrodes possess good capacitance properties. Specific capacitance of 276 F g−1 is obtained at current densities as high as 20 mA cm−2 (13.33 A g−1). Porous nature of RuO2 facilitates passing of high currents during charge–discharge cycling. RuO2/SS electrodes are thus useful for high power supercapacitor applications.