154 resultados para Crystalline zinc gallate thin film
Resumo:
An optimal composition of La0.67Cd0.33MnO3 was synthesized by ceramic route. The compound crystallized in a rhombohedral structure with lattice parameters a = 5.473(4) Å and α = 60°37′. Resistivity measurement showed an insulator-to-metal transition coupled with a ferromagnetic transition of around 255 K. Epitaxial thin films were fabricated on the LaAlO3 (100) substrate by a pulsed laser deposition technique. The psuedocubic lattice parameter a of the film is 3.873(4) Å. The insulator-to-metal transition of the film was observed at 250 K which is comparable with the bulk value. The film was ferromagnetic below this temperature. Magnetoresistance defined as ΔR/R0 = (RH−R0)/R0 was over −86% near the insulator-to-metal transition temperature of 240 K at 6 T magnetic field and over-30% at relatively low fields of 1 T. No magnetoresistance was observed at low temperatures in the film unlike in the polycrystalline sample, where about a 40% decrease in resistance was observed on applying 6 T magnetic field due to the spin dependent scattering at the grain boundaries.
Resumo:
This letter investigates the influence of a corrugated gate on the transfer characteristics of thin-film transistors. Corrugations that run parallel to the length of the channel from source to drain are patterned on the gate. The author finds that these corrugations result in higher currents as compared to conventional planar-gate transistors.
Resumo:
We have synthesized La0.83Na0.11MnO2.93 by heating La2O3 and MnCO3 in NaCl melt at 900 °C. The exact composition was arrived by analyzing each ion by an independent chemical method. The compound crystallized in a rhombohedral structure and showed an insulator-to-metal transition at 290 K. Epitaxial thin films were fabricated on LaAlO3 (100) using a pulsed laser deposition technique. The film also showed an insulator-to-metal transition at 290 K. Magnetoresistance [ΔR/R0 = (RH−R0)/R0] was −71% near the insulator-to-metal transition temperature of 290 K at 6 T magnetic field.
Resumo:
A highly transparent all ZnO thin film transistor (ZnO-TFT) with a transmittance of above 80% in the visible part of the spectrum, was fabricated by direct current magnetron sputtering, with a bottom gate configuration. The ZnO-TFT with undoped ZnO channel layers deposited on 300 nm Zn0.7Mg0.3O gate dielectric layers attains an on/off ratio of 104 and mobility of 20 cm2/V s. The capacitance-voltage (C−V) characteristics of the ZnO-TFT exhibited a transition from depletion to accumulation with a small hysteresis indicating the presence of oxide traps. The trap density was also computed from the Levinson’s plot. The use of Zn0.7Mg0.3O as a dielectric layer adds additional dimension to its applications. The room temperature processing of the device depicts the possibility of the use of flexible substrates such as polymer substrates. The results provide the realization of transparent electronics for next-generation optoelectronics.
Resumo:
Homogeneous thin films of Sr(0.6)Ca(0.4)TiO(3) (SCT40) and asymmetric multilayer of SrTiO(3) (STO) and CaTiO(3) (CTO) were fabricated on Pt/Ti/SiO(2)/Si substrates by using pulsed laser deposition technique. The electrical behavior of films was observed within a temperature range of 153 K-373 K. A feeble dielectric peak of SCT40 thin film at 273 K is justified as paraelectric to antiferroelectric phase transition. Moreover, the Curie-Weiss temperature, determined from the epsilon'(T) data above the transition temperature is found to be negative. Using Landau theory, the negative Curie-Weiss temperature is interpreted in terms of an antiferroelectric transition. The asymmetric multilayer exhibits a broad dielectric peak at 273 K. and is attributed to interdiffusion at several interfaces of multilayer. The average dielectric constants for homogeneous Sr(0.6)Ca(0.4)TiO(3) films (similar to 650) and asymmetric multilayered films (similar to 350) at room temperature are recognized as a consequence of grain size effect. Small frequency dispersion in the real part of the dielectric constants and relatively low dielectric losses for both cases ensure high quality of the films applicable for next generation integrated devices. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Protein nanoparticles (NPs) have found significant applications in drug delivery due to their inherent biocompatibility, which is attributed to their natural origin. In this study, bovine serum abumin (BSA) nanoparticles were introduced in multilayer thin film via layer-by-layer self-assembly for localized delivery of the anticancer drug Doxorubicin (Dox). BSA nanoparticles (similar to 100 nm) show a high negative zeta potential in aqueous medium (-55 mV) and form a stable dispersion in water without agglomeration for a long period. Hence, BSA NPs can be assembled on a substrate via layer-by-layer approach using a positively charged polyelectrolyte (chitosan in acidic medium). The protein nature of these BSA nanoparticles ensures the biocompatibility of the film, whereas the availability of functional groups on this protein allows one to tune the property of the self-assembly to have a pH-dependent drug release profile. The growth of multilayer thin film was monitored by UV-visible spectroscopy, and the films were further characterized by atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM). The drug release kinetics of these BSA nanoparticles and their self-assembled thin film has been compared at a physiological pH of 7.4 and an acidic pH of 6.4.
Resumo:
We report the synthesis of a novel class of low band gap copolymers based on anacenaphtho[1,2-b]quinoxaline core and oligothiophene derivatives acting as the acceptor and the donor moieties, respectively. The optical properties of the copolymers were characterized by ultraviolet-visible spectroscopy while the electrochemical properties were determined by cyclic voltammetry. The band gap of these polymers was found to be in the range 1.8-2.0 eV as calculated from the optical absorption band edge. X-ray diffraction measurements show weak pi-pi stacking interactions between the polymer chains. The hole mobility of the copolymers was evaluated using field-effect transistor measurements yielding values in the range 10(-5)-10(-3) cm(2)/Vs.
Resumo:
The diamond films were deposited onto a wurtzite gallium nitride (GaN) thin film substrate using hot-filament chemical vapor deposition (HFCVD). During the film deposition a lateral temperature gradient was imposed across the substrate by inclining the substrate. As grown films predominantly showed the hexagonal phase, when no inclination was applied to the substrate. Tilting the substrate with respect to the heating filament by 6 degrees imposed a lateral temperature gradient across the substrate, which induced the formation of a cubic diamond phase. Diamond grains were predominantly oriented in the (100) direction. However, a further increase in the substrate tilt angle to 12 degrees, resulted in grains oriented in the (111) direction. The growth rate and hence the morphology of diamond grains varied along the inclined substrate. The present study focuses on the measurements of dominant phase formation and crystal orientation with varying substrate inclination using orientation-imaging microscopy (OIM). This technique enables direct examination of individual diamond grains and their crystallographic orientation. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Photoresponse of n-type indium-doped ZnO and a p-type polymer (PEDOT:PSS) heterojunction devices are studied, juxtaposed with the photoluminescence of the In-ZnO samples. In addition to the expected photoresponse in the ultraviolet, the heterojunctions exhibit significant photoresponse to the visible (532 nm). However, neither the doped ZnO nor PEDOT: PSS individually show any photoresponse to visible light. The sub-bandgap photoresponse of the heterojunction originates from visible photon mediated e-h generation between the In-ZnO valence band and localized states lying within the band gap. Though increased doping of In-ZnO has limited effect on the photoluminescence, it significantly diminishes the photoresponse. The study indicates that optimally doped devices are promising for the detection of wavelengths in selected windows in the visible. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4704655]
Resumo:
In the present work, the ultrasonic strain sensing performance of the large area PVDF thin film subjected to the thermal fatigue is studied. The PVDF thin film is prepared using hot press and the piezoelectric phase (beta-phase) has been achieved by thermo-mechanical treatment and poling under DC field. The sensors used in aircrafts for structural health monitoring applications are likely to be subjected to a wide range of temperature fluctuations which may create thermal fatigue in both aircraft structures and in the sensors. Thus, the sensitivity of the PVDF sensors for thermal fatigue needs to be studied for its effective implementation in the structural health monitoring applications. In present work, the fabricated films have been subjected to certain number of thermal cycles which serve as thermal fatigue and are further tested for ultrasonic strain sensitivity at various different frequencies. The PVDF sensor is bonded on the beam specimen at one end and the ultrasonic guided waves are launched with a piezoelectric wafer bonded on another end of the beam. Sensitivity of PVDF sensor in terms of voltage is obtained for increasing number of thermal cycles. Sensitivity variation is studied at various different extent of thermal fatigue. The variation of the sensor sensitivity with frequency due to thermal fatigue at different temperatures is also investigated. The present investigation shows an appropriate temperature range for the application of the PVDF sensors in structural health monitoring.
Resumo:
We present an analytical field-effect method to extract the density of subgap states (subgap DOS) in amorphous semiconductor thin-film transistors (TFTs), using a closed-form relationship between surface potential and gate voltage. By accounting the interface states in the subthreshold characteristics, the subgap DOS is retrieved, leading to a reasonably accurate description of field-effect mobility and its gate voltage dependence. The method proposed here is very useful not only in extracting device performance but also in physically based compact TFT modeling for circuit simulation.
Resumo:
ZnO/Si heterojunctions were fabricated by growing ZnO thin films on p-type Si (100) substrate by pulsed laser deposition without buffer layers. The crystallinity of the heterojunction was analyzed by high resolution X-ray diffraction and atomic force microscopy. The optical quality of the film was analyzed by room temperature (RT) photoluminescence measurements. The high intense band to band emission confirmed the high quality of the ZnO thin films on Si. The electrical properties of the junction were studied by temperature dependent current-voltage measurements and RT capacitance-voltage (C-V) analysis. The charge carrier concentration and the barrier height (BH) were calculated, to be 5.6x10(19) cm(-3) and 0.6 eV respectively from the C-V plot. The BH and ideality factor, calculated using the thermionic emission (TE) model, were found to be highly temperature dependent. We observed a much lower value in Richardson constant, 5.19x10(-7)A/cm(2) K-2 than the theoretical value (32 A/cm(2) K-2) for ZnO. This analysis revealed the existence of a Gaussian distribution (GD) with a standard deviation of sigma(2)=0.035 V. By implementing the GD to the TE, the values of BH and Richardson constant were obtained as 1.3 eV and 39.97 A/cm(2) K-2 respectively from the modified Richardson plot. The obtained Richardson constant value is close to the theoretical value for n-ZnO. These high quality heterojunctions can be used for solar cell applications. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The thermally evaporated amorphous Sb40Se20S40 thin film of 800 nm thickness was subjected to light exposure for photo induced studies. The as-prepared and illuminated thin films were studied by X-ray diffraction, Fourier Transform Infrared Spectroscopy and X-ray Photoelectron Spectroscopy. The optical band gap was reduced due to photo induced effects along with the increase in disorder. These optical properties changes are due to the change of homopolar bond densities. The core level peak shifting in XPS spectra supports the optical changes happening in the film due to light exposure.
Resumo:
Reflectance change due to binding of molecules on thin film structures has been exploited for bio-molecular sensing by several groups due to its potential in the development of sensitive, low cost, easy to fabricate, large area sensors with high multiplexing capabilities. However, all of these sensing platforms have been developed using traditional semiconductor materials and processing techniques, which are expensive. This article presents a method to fabricate disposable thin film reflectance biosensors using polymers, such as polycarbonate, which are 2-3 orders of magnitude cheaper than conventional semiconductor and dielectric materials and can be processed by alternate low cost methods, leading to significant reduction in consumable costs associated with diagnostic biosensing. (C) 2011 Elsevier GmbH. All rights reserved.
Resumo:
Pure and tin doped zinc oxide (Sn:ZnO) thin films were prepared for the first time by NSP technique using aqueous solutions of zinc acetate dehydrate, tin (IV) chloride fendahydrate and methanol. X-ray diffraction patterns confirm that the films are polycrystalline in nature exhibiting hexagonal wurtzite type, with (0 0 2) as preferred orientation. The structural parameters such as lattice constant ('a' and `c'), crystallite size, dislocation density, micro strain, stress and texture coefficient were calculated from X-ray diffraction studies. Surface morphology was found to be modified with increasing Sn doping concentration. The ZnO films have high transmittance 85% in the visible region, and the transmittance is found to be decreased with the increase of Sn doping concentration. The corresponding optical band gap decreases from 3.25 to 3.08 eV. Room temperature photoluminescence reveals the sharp emission of strong UV peak at 400 nm (3.10 eV) and a strong sharp green luminescence at 528 nm (2.34 eV) in the Sn doped ZnO films. The electrical resistivity is found to be 10(6) Omega-cm at higher temperature and 10(5) Omega-cm at lower temperature. (C) 2012 Elsevier Ltd. All rights reserved.