100 resultados para Cella Solare, simulazione numerica, Metal Wrap Through, rear Point Contact


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transition metals catalyse a variety of organic reactions, of which the ring opening of strained ring organic molecules generated a lot of interest. Theoreticians predicted a metal orbital catalysed pathway, which involved concerted bond breaking and bond forming. On the other hand experimentalists were able to show that the reaction was not proceeding through a concerted pathway by intercepting the intermediates involved. There remained, however, two ring systems methylenecyclopropanes and cyclobutenes—whose reactions with metal complexes seemed to be of a concerted nature. An analysis of the reactions of different metal complexes with these ring systems and the theoretical predictions provide a rationale for understanding these reactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The metal to insulator transition in the charge-transfer NiS2-xSex compound has been investigated through infrared reflectivity. Measurements performed by applying pressure to pure NiS2 (lattice contraction) and by Se alloying (lattice expansion) reveal that in both cases an anomalous metallic state is obtained. We find that optical results are not compatible with the linear Se-alloying vs pressure-scaling relation previously established through transport, thus pointing out the substantially different microscopic origin of the two transitions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermal analysis of hydrazinium metal sulphates, (N2H5)2 M(SO4)-I, and their hydrazinates, (N2H5)2−M(SO4)23N2H4−II, whereM=Fe, Co and Ni have been investigated using thermogravimetry and differential thermal analysis. Type II compounds on heating decompose through an intermediate I and metal suphlate to the respective metal oxides.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The complexes of thiophene 2-thiocarboxamide (TTCA) with some metal chlorides and bromides [M = Ni(II), Zn(II), Cd(II), Hg(II) and Cu(I)] are described. Elemental analyses, magnetic susceptibilities and conductance studies, electronic, IR, proton and 13C magnetic resonance spectra are reported. The results suggest exclusive coordination of TTCA through the thiocarbonyl sulfur. The influence of the thiophene ring on the donor properties of the thioamide are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The complexes of monothiobiuret with Co(II), Ni(II), Cd(II) and Hg(II) chlorides are investigated. The ligand is suggested to be unidentate bonding through sulfur in Co(II) and Hg(II) complexes and bidentate bonding through both sulfur and oxygen atoms in the other two complexes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Crystal structures of lithium, sodium, potassium, calcium and magnesium salts of adenosine 2'-monophosphate (2'-AMP) have been obtained at atomic resolution by X-ray crystallographic methods. 2'-AMP.Li belongs to the monoclinic space group P21 with a = 7.472(3)Å, b = 26.853(6) Å, c = 9.184(1)Å, b = 113.36(1)Å and Z= 4. 2'-AMP.Na and 2'-AMP.K crystallize in the trigonal space groups P31 and P3121 with a = 8.762(1)Å, c = 34.630(5)Å, Z= 6 and a = 8.931(4), Åc = 34.852(9)Å and Z= 6 respectively while 2'-AMP.Ca and 2'-AMP.Mg belong to space groups P6522 and P21 with cell parameters a = 9.487(2), c = 74.622(13), Z = 12 and a = 4.973(1), b = 10.023(2), c = 16.506(2), beta = 91.1(0) and Z = 2 respectively. All the structures were solved by direct methods and refined by full matrix least-squares to final R factors of 0.033, 0.028, 0.075, 0.069 and 0.030 for 2'-AMP.Li, 2'-AMP.Na, 2'- AMP.K, 2'-AMP.Ca and 2'-AMP.Mg, respectively. The neutral adenine bases in all the structures are in syn conformation stabilized by the O5'-N3 intramolecular hydrogen bond as in free acid and ammonium complex reported earlier. In striking contrast, the adenine base is in the anti geometry (cCN = -156.4(2)°) in 2'-AMP.Mg. Ribose moieties adopt C2'-endo puckering in 2'-AMP.Li and 2'-AMP.Ca, C2'-endo-C3'-exo twist puckering in 2'-AMP.Na and 2'-AMP.K and a C3'-endo-C2'-exo twist puckering in 2'-AMP.Mg structure. The conformation about the exocyclic C4'-C5' bond is the commonly observed gauche-gauche (g+) in all the structures except the gauche- trans (g-) conformation observed in 2'-AMP.Mg structure. Lithium ions coordinate with water, ribose and phosphate oxygens at distances 1.88 to 1.99Å. Na+ ions and K+ ions interact with phosphate and ribose oxygens directly and with N7 indirectly through a water oxygen. A distinct feature of 2'-AMP.Na and 2'-AMP.K structures is the involvement of ribose O4' in metal coordination. The calcium ion situated on a two-fold axis coordinates directly with three oxygens OW1, OW2 and O2 and their symmetry mates at distances 2.18 to 2.42Å forming an octahedron. A classic example of an exception to the existence of the O5'-N3 intramolecular hydorgen bond is the 2'-AMP.Mg strucure. Magnesium ion forms an octahedral coordination with three water and three phosphate oxygens at distances ranging from 2.02 to 2.11Å. A noteworthy feature of its coordination is the indirect link with N3 through OW3 oxygen resulting in macrochelation between the base and the phosphate group. Greater affnity of metal clays towards 5' compared to 2' and 3' nucleotides (J. Lawless, E. Edelson, and L. Manring, Am. Chem. Soc. Northwest Region Meeting, Seattle. 1978) due to macrochelation infered from solution studies (S. S. Massoud, H. Sigel, Eur. J. Biochem. 179, 451-458 (1989)) and interligand hydrogen bonding induced by metals postulated from metal-nucleotide structures in solid state (V. Swaminathan and M. Sundaralingam, CRC. Crit. Rev. Biochem. 6, 245-336 (1979)) are borne out by our structures also. The stacking patterns of adenine bases of both 2'-AMP.Na and 2'-AMP.K structures resemble the 2'-AMP.NH4 structure reported in the previous article. 2'-AMP.Li, 2'-AMP.Ca and 2'-AMP.Mg structures display base-ribose O4' stacking. An overview of interaction of monovalent and divalent cations with 2' and 5'-nucleotides has been presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The synthesis of colloids of copper and zinc nanoparticles by solvated metal atom dispersion (SMAD) is described. The as-prepared colloids with a large size distribution of the particles are transformed into colloidal nanoparticles of a narrow size distribution by the digestive ripening process which involves refluxing the colloid at or near the boiling point of the solvent in the presence of a passivating ligand. The copper nanoparticles of 2.1 ± 0.3 nm and zinc nanoparticles of 3.9 ± 0.3 nm diameters have thus been obtained. Digestive ripening of the as-prepared copper and zinc colloids together in the presence of a passivating agent gave Cu@ZnO core−shell nanoparticles, with an average diameter of 3.0 ± 0.7 nm. Particles synthesized in this manner were characterized by UV−visible spectroscopy, high-resolution electron microscopy, energy-filtered electron microscopy, and powder X-ray diffraction methods which confirm the core−shell structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The treatment of [M(dppf)(H2O)2](OTf)2 (dppf =1,1′-bis(diphenylphosphino)ferrocene; M = Pd, Pt) with 1 equiv of disodium fumarate in methanol medium showed an unusual hydrogenation of the ethylenic bond followed by the formation of metallochelates linking M through one of the carboxylates and the β-carbon with respect to COO−. Despite the possibility of formation of a [2 + 2] or [4 + 4] self-assembled macrocycle, the reduction of fumarate to succinate, and in particular the linking through the β-carbon, is unique since a similar treatment using disodium succinate instead of disodium fumarate yielded an expected metallochelate where both the carboxylates were coordinated to the square-planar metal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Monothiobenzoate (MTB) (Chemical Equation Presented) complexes with the molecular formulas Cr(MTB)3, [Ni(MTB)2]n, [Zn(MTB)2]n, [Cd(MTB)2]n, [Hg(MTB)2]n, [Cu(MTB)]n, and [Ag(MTB)]n have been prepared and studied. All the complexes are nonionic in acetonitrile. Only the chromium complex is soluble in nitrobenzene and found to be monomeric cryoscopically. The thiobenzoate ligand appears to be asymmetrically chelated in Cr(III) and Cd(II) complexes, with stronger oxygen and sulfur coordination, respectively, while practically symmetrically coordinated in Ni(II) and Zn(II) complexes. These four complexes are assigned distorted octahedral structures around the metal ion. The coordination in Hg(II), Cu(I), and Ag(I) complexes is mainly through sulfur indicating the monodentate nature of the thiobenzoate ligand in these complexes. The coordination of monothiobenzoate ion in the complexes has been rationalized in terms of "hard" and "soft" acid-base concept.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For the first time, the impact of energy quantisation in single electron transistor (SET) island on the performance of hybrid complementary metal oxide semiconductor (CMOS)-SET transistor circuits has been studied. It has been shown through simple analytical models that energy quantisation primarily increases the Coulomb Blockade area and Coulomb Blockade oscillation periodicity of the SET device and thus influences the performance of hybrid CMOS-SET circuits. A novel computer aided design (CAD) framework has been developed for hybrid CMOS-SET co-simulation, which uses Monte Carlo (MC) simulator for SET devices along with conventional SPICE for metal oxide semiconductor devices. Using this co-simulation framework, the effects of energy quantisation have been studied for some hybrid circuits, namely, SETMOS, multiband voltage filter and multiple valued logic circuits. Although energy quantisation immensely deteriorates the performance of the hybrid circuits, it has been shown that the performance degradation because of energy quantisation can be compensated by properly tuning the bias current of the current-biased SET devices within the hybrid CMOS-SET circuits. Although this study is primarily done by exhaustive MC simulation, effort has also been put to develop first-order compact model for SET that includes energy quantisation effects. Finally, it has been demonstrated that one can predict the SET behaviour under energy quantisation with reasonable accuracy by slightly modifying the existing SET compact models that are valid for metallic devices having continuous energy states.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nucleation and growth mechanisms during high temperature oxidation of liquid Al-3% Mg and Al-3% Mg-3% Si alloys were studied with the aim of enhancing our understanding of a new composite fabrication process. The typical oxidation sequence consists of an initial event of rapid but brief oxidation, followed by an incubation period of limited oxide growth after which bulk Al2O3/Al composite forms. A duplex oxide layer, MgO (upper) and MgAl2O4 (lower), forms on the alloy surface during initial oxidation and incubation. The spinel layer remains next to the liquid alloy during bulk oxide growth and is the eventual repository for most of the magnesium in the original alloy. Metal microchannels developed during incubation continuously supply alloy through the composite to the reaction interface. During the growth process, a layered structure exists at the upper extremity of the composite, consisting of MgO at the top surface, MgAl2O4 (probably discontinuous), Al alloy, and finally the bulk Al2O3 composite containing microchannels of the alloy. The bulk oxide growth mechanism appears to involve continuous formation and dissolution of the Mg-rich oxides at the surface, diffusion of oxygen through the underlying liquid metal, and epitaxial growth of Al2O3 on the existing composite body. The roles of Mg and Si in the composite growth process are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transition metal ammonium double sulphates (NH4)2M(SO4)2· 6H2O, where M = Fe, Co and Ni react with hydrazine hydrate in air giving crystalline compounds of the general formula (N2H5) [M(N2H3COO)3] H2O. The reaction proceeds through (N2H5)2 M(SO4)2, · 3N2H4, (N2H5)2 [M(OH)4 · (N2H4)2], M(N2H3COO)2 · (N2H4)2 and N2H5 [M(N2 H3 COO)3] intermediates. The reaction sequence is followed by chemical analysis and infrared spectra. A possible reaction mechanism has been suggested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sol-Gel method was employed to synthesize pure and wide ranged La-modified CaCu3Ti4O12 ceramics using mixed acetate-nitrate-alcoxide individual metal-ion precursors. SEM pictures revealed that grain size monotonously decreases with the extent of La incorporation. All the prepared ceramics manifested dielectric constant in the range similar to 10(3)-10(4). Dielectric loss was found to decrease with La incorporation and got optimized for 20% La3+ while retaining its high dielectric constant which may be industrially important. Room temperature Impedance spectroscopy suggested that decrease in grain resistance is responsible for reduction in dielectric loss according to Internal Barrier Layer Capacitor (IBLC) model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

X-ray analysis of the ternary complex [Cu(5′-UMP)(im)2(H2O)]·4H2O, where 5′-UMP uridine-5′-monophosphate and IM = imidazole, reveals a novel metal binding mode of pyrimidine nucleotide through the ribose group.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Erosion characteristics of high chromium (Cr, 16-19%) alloy cast iron with 5% and 10% manganese (Mn) prepared in metal and sand moulds through induction melting are investigated using jet erosion test setup in both as-cast and heat-treated conditions. The samples were characterised for hardness and microstructural properties. A new and novel non-destructive evaluation technique namely positron lifetime spectroscopy has also been used for the first time to characterise the microstructure of the material in terms of defects and their concentration. We found that the hardness decreases irrespective of the sample condition when the mould type is changed from metal to sand, On the other hand, the erosion volume loss shows an increasing trend. Since the macroscopic properties have a bearing on the microstructure, good credence is obtained from the microstructural features as seen from light and scanning electron micrographs. Faster cooling in the metal mould yielded fine carbide precipitation on the surface. The defect size and their concentration derived from positron method are higher for sand mould compared to metal mould. Lower erosion loss corresponds to smaller size defects in metal mould are the results of quicker heat transfer in the metal mould compared to the sand mould. Heat treatment effects are clearly seen as the reduced concentration of defects and spherodisation of carbides points to this. The erosion loss with respect to the defects size and concentration correlate very well.