142 resultados para Cation-exchange Capacity
Resumo:
A new series of layered perovskite oxides, AILaNb2O7 (A = Li, Na, K, Rb, Cs, NH4) constituting n = 2 members of the family A A′n−1BnO3n+1, has been prepared. Their structure consists of double perovskite slabs interleaved by A atoms. Hydrated HLaNb2O7 is formed by topotactic proton exchange of the A atoms in ALaNb2O7 (A = K, Rb, Cs). The hydrate readily loses water to give anhydrous HLaNb2O7 which is isostructural with RbLaNb2O7. HLaNb2O7 exhibits Bronsted acidity forming intercalation compounds with bases such as n-octylamine and pyridine.
Resumo:
In the case of an ac cable, power transmission is limited by the length of the cable due to the capacitive reactive current component. It is well known that high-voltage direct current (HVDC) cables do not have such limitations. However, insulation-related thermal problems pose a limitation on the power capability of HVDC cables. The author presents a viable theoretical development, a logical extension to Whitehead's theory on thermal limitations of the insulation. The computation of the maximum power-carrying capability of HVDC cables subject to limits on the maximum operable temperature of the insulation is presented. The limitation on the power-carrying capability is closely associated with the electrothermal insulation failure. The effect of environmental interaction by way of external thermal resistance, an important aspect, is also considered in the formulations. The Lagrange multiplier method has been used to handle the ensuing optimization problem. The theory is based on an accepted theory of thermal breakdown in insulation and is an important and a coherent extension of great significance.
Resumo:
The heat capacity of a substance is related to the structure and constitution of the material and its measurement is a standard technique of physical investigation. In this review, the classical methods are first analyzed briefly and their recent extensions are summarized. The merits and demerits of these methods are pointed out. The newer techniques such as the a.c. method, the relaxation method, the pulse methods, the laser flash calorimetry and other methods developed to extend the heat capacity measurements to newer classes of materials and to extreme conditions of sample geometry, pressure and temperature are comprehensively reviewed. Examples of recent work and details of the experimental systems are provided for each method. The introduction of automation in control systems for the monitoring of the experiments and for data processing is also discussed. Two hundred and eight references and 18 figures are used to illustrate the various techniques.
Resumo:
Several molecules like ionophores, vitamins, ion-binding cyclic peptides, acidic phospholipids, surfactants are known to expose the inner side of vesicles, to the externally added cations. Whereas ionophores and certain other systems bring about these changes by a selective transport (influx) of the cation by specialized mechanisms known as the carrier and channel mechanism, other systems cause lysis and vesicle fusion. These systems have been successfully studied using1H,31 P and13C nuclear magnetic resonance spectroscopy after the demonstration, fifteen years ago, of the ability of paramagnetic lanthanide ions to distinguish the inside of the vesicle from the outside. The results of these ’nuclear magnetic resonance kinetics’ experiments are reviewed.
Resumo:
Porphyrins appended with crown ether, benzo-15-crown-5, at the methine positions have been synthesized and characterized. The fully and partially substituted porphyrins and their metallo (Co, Cu, and Zn) derivatives describe one or more ether cavities in the periphery that are capable of recognizing spherical cations. The ability of these macrocycles to complex cations (Na+, K+, Mg2+, Ca2+, Ba2', and NH4+) is investigated by use of visible, 'H NMR, ESR, and emission spectral studies. The tetrasubstituted crown porphyrin (TCP) exhibits very high selectivity for K+. The cations (K', Ba2+, and NH4+) that require two crown ether cavities for complexation promote dimerization of the porphyrins. The ESR study of the cation-induced porphyrin dimers reveals axial symmetry with the porphyrin planes separated by -4.2 A. This distance increases from the fully substituted to partially substituted porphyrins. The cations (K', Ba2+, and NH4') quench efficiently the fluorescence of the free base porphyrins and their metallo derivatives. The quenching process is attributed to the steric geometry of the dimers.
Resumo:
It is shown that the intrinsic two-phonon terms occurring in first order in the electron-phonon interaction Hamiltonian can give rise to (i) an essential doubling of the interaction phase space (BCS cutoff) and (ii) an attractive pairing interaction proportional to the phonon occupation numbers. This suggests a possible enhancement of the superconductive transition temperature in the presence of high-frequency acoustic field.
Resumo:
The heat capacity Cp of the binary liquid system CS2 + CH3CN has been studied. This system has an upper critical solution temperature To ≈ 323.4 K and a critical mole fraction of CS2xo ≈ 0.5920. Measurements were made both for mixtures close to and far away from the critical region. The heat capacity of the mixture with x = xo exhibits a symmetric logarithmic anomaly around Tc, which is apparently preserved even for compositions in the immediate vicinity of xc. For compositions far away from xc, only a normal rise in Cp over the covered temperature range is observed.
Resumo:
The damping capacity of cast graphitic aluminum alloy composites has been measured using a torsion pendulum at a constant strain amplitude. It was found that flake-graphite particles dispersed in the matrix of aluminum alloys increased the damping capacity; the improvement was greater, the higher the amount of graphite dispersed in the matrix. At sufficiently high graphite contents the damping capacity of graphitic aluminum composites approaches that of cast iron. The ratio between the damping capacity and the density of graphitic aluminum alloys is higher than cast iron, making them very attractive as light-weight, high-damping materials for possible aircraft applications. Machinability tests on graphite particle-aluminum composites, conducted at speeds of 315 sfm and 525 sfm, showed that the chip length decreased with the amount of graphite of a given size. When the size of graphite was decreased, at a given machining speed, the chip length decreased. Metallographic examination shows that graphite particles act as chip breakers, and are frequently sheared parallel to the plane of the
Resumo:
A study of the hyperfine interaction in the ESR of coupled Cu---Cu pairs in single crystals of copper diethyldithiocarbamate as a function of temperature has shown distinct differences in the hyperfine structure in the two fine-structure transitions at 20 K; the spectrum does not have the usual binomial hyperfine pattern for the fine-structure transition of the low field in contrast to that of the high field. The details of the structure of both fine-structure transitions in the 20-K spectrum can be explained by recognizing the fact that the mixing of the nuclear spin states caused by the anisotropic hyperfine interaction affects the electron spin states |+1 and |−1 differently. The anomalous hyperfine structure is found to become symmetric at 77 and 300 K. It is proposed that the reason for this lies in the dynamics of spin-lattice interaction, which limits the lifetime of the spin states in each of the electronic levels |−1 , |0 , and |+1 . The estimate of spin-lattice relaxation time in the temperature range where the changes are observed agrees with those indicated by other studies. The model proposed here for the hyperfine interaction of pairs in the electronic triplet state is of general validity.
Resumo:
Calculations are reported on the interaction energies in the dimer, the excimers, and the dimer ions of ethylene. The various a- and u-electron terms for different conformations of the dimeric species are determined by using the exchange perturbation method. The results predict that the singlet excimer and the dimer cation are stable primarily because of the large magnitude of the exciton-resonance and charge-resonance terms, respectively, while the neutral dimer, the triplet excimer, and the dimer anion are weakly stable. The variations of the various energy terms with conformations suggest that these dimeric species cannot have identifical structure.
Resumo:
A spin one Ising system with biquadratic exchange, is investigated, using Green's function technique in random phase approximation (RPA). Transition temperature Tc and <(Sz)2> at Tc, are found to increase with biquadratic exchange parameter α for sc, bcc and fcc lattices. The variation of <(Sz)2> at Tc with α is found to be the same for the above lattices.
Resumo:
A study of the hyperfine interaction in the ESR of Cu-Cu pairs in single crystals of copper diethyldithiocarbamate as a function of temperature has shown distinct differences in the hyperfine structure in the two fine structure transitions at 20 K, the spectrum not having the same hyperfine intensity pattern in the low field fine structure transition in contrast to that of the high field transition. The details of the structure of both the fine structure transitions in the 20 K spectrum have now been explained by recognizing the fact that the mixing of the nuclear spin states caused by the anisotropic hyperfine interaction affects the electron spin states | + 1 > and | −> differently. This has incidentally led to a determination of the sign ofD confirming the earlier model. The anomalous hyperfine structure is found to become symmetric at 77 K and 300 K. It is proposed that the reason for this lies in the dynamics of spin-lattice interaction which limits the lifetime of the spin states in each of the electronic levels | − 1 >, | 0 > and | + 1 > The estimate of spin-lattice relaxation time agrees with those indicated from other studies. The model proposed here for the hyperfine interaction of pairs in the electronic triplet state is of general validity.
Resumo:
Site-specific geotechnical data are always random and variable in space. In the present study, a procedure for quantifying the variability in geotechnical characterization and design parameters is discussed using the site-specific cone tip resistance data (qc) obtained from static cone penetration test (SCPT). The parameters for the spatial variability modeling of geotechnical parameters i.e. (i) existing trend function in the in situ qc data; (ii) second moment statistics i.e. analysis of mean, variance, and auto-correlation structure of the soil strength and stiffness parameters; and (iii) inputs from the spatial correlation analysis, are utilized in the numerical modeling procedures using the finite difference numerical code FLAC 5.0. The influence of consideration of spatially variable soil parameters on the reliability-based geotechnical deign is studied for the two cases i.e. (a) bearing capacity analysis of a shallow foundation resting on a clayey soil, and (b) analysis of stability and deformation pattern of a cohesive-frictional soil slope. The study highlights the procedure for conducting a site-specific study using field test data such as SCPT in geotechnical analysis and demonstrates that a few additional computations involving soil variability provide a better insight into the role of variability in designs.
Resumo:
We have observed the exchange spring behavior in the soft (Fe3O4)-hard (BaCa2Fe16O27)-ferrite composite by tailoring the particle size of the individual phases and by suitable thermal treatment of the composite. The magnetization curve for the nanocomposite heated at 800 degrees C shows a single loop hysteresis showing the existence of the exchange spring phenomena in the composite and an enhancement of 13% in (BH)(max) compared to the parent hard ferrite (BaCa2Fe16O27). The Henkel plot provides the proof of the presence of the exchange interaction between the soft and hard grains as well as its dominance over the dipolar interaction in the nanocomposite.
Resumo:
Two new neutral copper-azido polymers [Cu-3(N-3)(6)(tmen)(2)](n)(1)and [Cu-6(N-3)(12)(deen)(2)](n) (2) [tmen = N,N,N, N-tetramethylethylenediamine and deen = N,N-diethylethylenediamine] have been synthesized by using lower molar equivalents of the chelating diamine ligands with Cu(NO3)(2)center dot 3H(2)O and an excess of NaN3. The single crystal X-ray structure shows that in the basic unit of the 1D complex 1, the three Cu-II ions are linked by double end-on azido bridges with Cu-N-EO-Cu angles on both sides of the magnetic exchange critical angle of 108 degrees. Complex 2 is a 3D framework of a basic u-6 cluster. Cryomagnetic susceptibility measurements over a wide range of temperature exhibit dominant ferromagnetic behavior in both the complexes. Density functional theory calculations (B3LYP functional) have been performed on the trinuclear unit to provide a qualitative theoretical interpretation of the overall ferromagnetic behavior shown by the complex 1.