246 resultados para Cadmium alloys
Resumo:
The nanoindentation hardness of individual shear bands in a Zr-based metallic glass was investigated in order to obtain a better understanding of how shear band plasticity is influenced by non-crystalline defects. The results clearly showed that the shear band hardness in both as-cast and structurally relaxed samples is much lower than the respective hardness of undeformed region. Interestingly, inter-band matrix also exhibited lower hardness than undeformed region. The results are discussed in terms of the influence of structural state and the prevailing mechanism of plastic deformation.
Resumo:
Three inorganic-organic hybrid framework cadmium thiosulfate phases have been investigated for adsorption and photodegradation of organic dye molecules. Different classes of organic dyes, viz., triaryl methane, azo, xanthene, anthraquinone, have been studied. The anionic dyes with sulfonate groups appear to readily adsorb on the cadmium thiosulfate compounds in an aqueous medium. The adsorption of the dye molecules, however, does not create any structural changes on the cadmium thiosulfate compounds, though weak electronic interactions have been observed. The adsorbed dyes have been desorbed partially in an alcoholic medium, suggesting possible applications in scavenging specific anionic dyes from the aqueous solutions. Langmuir adsorption/desorption isotherms have been used to model this behavior. UV-assisted (lambda(max) = 365 nm) photocatalytic decomposition studies on the cationic dyes indicate reasonable activity comparable with that of Degussa P-25 (TiO2) catalyst. Sunlight assisted photocatalyti studies have been carried out in detail employing hybrid framework compounds. The Langmuir-Hinshelwood kinetics model, employed to follow the degradation profile of the organic dyes, indicates that the photocatalytic degradation follows the order: triaryl methane > azo > xanthene.
Resumo:
The β-phase aging response of Cu–Al–Ni single crystal shape memory alloys (SMAs) within the temperature range of 473–573 K has been investigated. Alloys in austenitic (Cu–14.1Al–4Ni wt.%, alloy A) and martensitic (Cu–13.4Al–4Ni wt.%, alloy M) conditions at room temperature were considered. Aged samples show presence of β1′ and γ1′ martensites in both the alloys and formation of γ2 precipitates in the alloy A. The differential scanning calorimetry (DSC) thermograms of the aged samples show increase in transformation temperatures as well as transformation hysteresis with aging. Dynamic mechanical analysis (DMA) was conducted on both the alloys to ascertain the role of precipitates and martensitic transition on tan δ, which characterizes the damping behaviour of the material. With aging, a steady decrease in tan δ value was observed in both the alloys, which was attributed to the decrease in the number of interfaces per unit area with increasing aging temperature. Moreover, in alloy A, as the volume fraction of precipitate increases with aging, the movement of martensitic interfaces is restricted causing a decreased tan δ.
Resumo:
A conventional magnesium alloy, AZ91D, and two creep resistant magnesium alloys, developed for powertrain applications, MRI 153M and MRI 230D, are prepared by high pressure die casting. These alloys are tested for their creep behaviour in the continuous manner, as is the Current practice, and in the interrupted manner, which represents the real life Situation more closely. It is observed that the interrupted creep tests give rise to a primary creep appearing at the beginning of each cycle resulting in a higher average strain rate than that encountered in the continuous creep tests. Further, the shorter the cycle time, higher is the average strain rate in the interrupted creep tests. A higher average strain rate will give rise to a higher strain over the same period. This is attributed to the recovery taking place during the cooling and heating between two cycles. The effect of additional precipitation during interrupted creep tests depends on the nature of the precipitates. The additional precipitation of beta phase during the cooling and heating between two cycles increases the steady state strain rate in the AZ91D and MRI 153M alloys. whereas the additional precipitation of C36 phase during the cooling and heating between two cycles decreases the steady state strain rate in the MRI 230D alloy. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The mechanical properties of amorphous alloys have proven both scientifically unique and of potential practical interest, although the underlying deformation physics of these materials remain less firmly established as compared with crystalline alloys. In this article, we review recent advances in understanding the mechanical behavior of metallic glasses, with particular emphasis on the deformation and fracture mechanisms. Atomistic as well as continuum modeling and experimental work on elasticity, plastic flow and localization, fracture and fatigue are all discussed, and theoretical developments are connected, where possible, with macroscopic experimental responses. The role of glass structure on mechanical properties, and conversely, the effect of deformation upon glass structure, are also described. The mechanical properties of metallic glass-derivative materials – including in situ and ex situ composites, foams and nanocrystal-reinforced glasses – are reviewed as well. Finally, we identify a number of important unresolved issues for the field.
Resumo:
Assembly consisting of cast and wrought aluminum alloys has wide spread application in defense and aero space industries. For the efficacious use of the transition joints, the weld should have adequate strength and formability. In the present investigation, A356 and 6061 aluminum alloys were friction stir welded under tool rotational speed of 1000-1400 rpm and traversing speed of 80-240 mm/min, keeping other parameters same. The variable process window is responsible for the change in total heat input and cooling rate during welding. Structural characterization of the bonded assemblies exhibits recovery-recrystallization in the stirring zone and breaking of coarse eutectic network of Al-Si. Dispersion of fine Si rich particles, refinement of 6061 grain size, low residual stress level and high defect density within weld nugget contribute towards the improvement in bond strength. Lower will be the tool rotational and traversing speed, more dominant will be the above phenomena. Therefore, the joint fabricated using lowest tool traversing and rotational speed, exhibits substantial improvement in bond strength (similar to 98% of that of 6061 alloy), which is also maximum with respect to others. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
From the quaternary Ti-Zr-Hf-Ni phase diagram. the cross-section at 20 at % Ni was selected for investigation. The icosahedral quasicrystalline, crystalline and amorphous phases were observed to form in nine kinds of rapidly solidified (TixZryHfz)(80)Ni-20 (x + y + z = 1) alloys at different compositions. The quasilattice constants of 0.519 and 0.531 nm were obtained for the icosahedral phase formed in the melt-spun Ti40Zr20Hf20Ni20 and Ti20Zr40Hf20Ni20 alloys. respectively. The icosahedral phase formed in the melt-spun Ti40Zr20Hf20Ni20 alloy especially is thermodynamically stable. The supercooled liquid region of the Ti20Zr20Hf40Ni20 glassy alloy reached 64 K. From these results a comparison of quasicrystal-forming and glass-forming abilities, was carried out. The quasicrystal-forming ability was reduced and glass-forming ability was improved with an increase in Hf and Zr contents in the (TixZryHfz)(80)Ni-20 alloys. On the other hand. an increase in Ti content caused an improvement in quasicrystal-forming ability.
Resumo:
The thermally activated plastic flow of polycrystalline cadmium was investigated by differentialstress creep tests at 86°K and tensile tests in the temperature range 86°–473°K. The activation energy (0.55 eV) at zero effective stress and the activation volume as a function of effective stress were obtained. It is concluded that intersection of glide and forest dislocations becomes rate controlling for low temperature deformation. The approximate stacking-fault width in cadmium is deduced to be “1.5b”.
Resumo:
We investigate the growth kinetics of CdS nanocrystals in the quantum confinement regime using time-resolved small-angle X-ray scattering. In contrast to earlier reports for similar systems, we establish that the growth kinetics in this case follows the Lifshitz-Slyozov-Wagner theory, for not only growth of the average diameter of the nanocrystals but also the time dependence of the size distribution and the temperature dependence of the rate constant. This is the first rigorous example of the coarsening process in the quantum confinement (< 5 nm)regime. Ab initio studies for the reaction pathways provide a microscopic understanding of this finding.
Resumo:
The Ramberg-Osgood relation which adequately describes the stress-strain curve of a strain-hardening material is extended to formulate the constitutive laws for creep. The constitutive laws which describe primary creep adequately are extended to secondary creep. The results are verified for the case of R.R. 59 at 200°C, Nimonic 80A and Nimonic 90 alloys at 750°C.
Resumo:
The Raman spectrum of a single crystal of cadmium acetate dihydrate has been recorded for the first time using λ 2537 excitation. Twenty-three lines have been observed out of which ten have been attributed to the internal oscillations of the acetate ion, nine to the lattice modes, two to low-frequency hydrogen bond vibrations. A line at 308 cm.−1 and the continuum 3250–3560 cm.−1 have been assigned to the Cd-O6 and internal vibrations of the water molecules.
Resumo:
1. A detailed polarographic study of cadmium has been made employing glycine, α-alanine, β-alanine, valine, aspartic acid, glutamic acid and asparagine as complexing agents at various pH values. The effect of incorporating sodium hydroxide, sodium carbonate and ammonium nitrate + ammonium hydroxide, on the polarographic behaviour of amino acid complexes of cadmium has also been investigated. 2. The reduction process has been found to be reversible in all systems. 3. The small shifts in the half-wave potentials noticed due to increase in the concentration of sodium hydroxide and sodium carbonate in presence of amino acids have been explained on the basis of formation of mixtures of pure and mixed amino acid complexes of cadmium. Mixed complexes have also been noticed in presence of ammonium hydroxide and ammonium nitrate and amino acids. 4. Polarographic evidence has been obtained for the formation of over 30 pure and mixed complexes. The dissociation constant Kd, the Δ F° value for the dissociation, and standard potential value for the formation, of each complex have been computed. 5. It has been found that cadmium can be polarographically estimated in amino acid solutions.