276 resultados para Bayesian Modeling Averaging
Resumo:
We develop an alternate characterization of the statistical distribution of the inter-cell interference power observed in the uplink of CDMA systems. We show that the lognormal distribution better matches the cumulative distribution and complementary cumulative distribution functions of the uplink interference than the conventionally assumed Gaussian distribution and variants based on it. This is in spite of the fact that many users together contribute to uplink interference, with the number of users and their locations both being random. Our observations hold even in the presence of power control and cell selection, which have hitherto been used to justify the Gaussian distribution approximation. The parameters of the lognormal are obtained by matching moments, for which detailed analytical expressions that incorporate wireless propagation, cellular layout, power control, and cell selection parameters are developed. The moment-matched lognormal model, while not perfect, is an order of magnitude better in modeling the interference power distribution.
Resumo:
A detailed mechanics based model is developed to analyze the problem of structural instability in slender aerospace vehicles. Coupling among the rigid-body modes, the longitudinal vibrational modes and the transverse vibrational modes due to asymmetric lifting-body cross-section are considered. The model also incorporates the effects of aerodynamic pressure and the propulsive thrust of the vehicle. The model is one-dimensional, and it can be employed to idealized slender vehicles with complex shapes. Condition under which a flexible body with internal stress waves behaves like a perfect rigid body is derived. Two methods are developed for finite element discretization of the system: (1) A time-frequency Fourier spectral finite element method and (2) h-p finite element method. Numerical results using the above methods are presented in Part II of this paper. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The notion of optimization is inherent in protein design. A long linear chain of twenty types of amino acid residues are known to fold to a 3-D conformation that minimizes the combined inter-residue energy interactions. There are two distinct protein design problems, viz. predicting the folded structure from a given sequence of amino acid monomers (folding problem) and determining a sequence for a given folded structure (inverse folding problem). These two problems have much similarity to engineering structural analysis and structural optimization problems respectively. In the folding problem, a protein chain with a given sequence folds to a conformation, called a native state, which has a unique global minimum energy value when compared to all other unfolded conformations. This involves a search in the conformation space. This is somewhat akin to the principle of minimum potential energy that determines the deformed static equilibrium configuration of an elastic structure of given topology, shape, and size that is subjected to certain boundary conditions. In the inverse-folding problem, one has to design a sequence with some objectives (having a specific feature of the folded structure, docking with another protein, etc.) and constraints (sequence being fixed in some portion, a particular composition of amino acid types, etc.) while obtaining a sequence that would fold to the desired conformation satisfying the criteria of folding. This requires a search in the sequence space. This is similar to structural optimization in the design-variable space wherein a certain feature of structural response is optimized subject to some constraints while satisfying the governing static or dynamic equilibrium equations. Based on this similarity, in this work we apply the topology optimization methods to protein design, discuss modeling issues and present some initial results.
Resumo:
The copper(II) complex [Cu(salgly) (bpy)] . 4H(2)O (1), where salgly is a tridentate glycinatosalicylaldimine Schiffbase Ligand, is prepared and structurally characterized. The complex is found to be catalytically active in the oxidation of ascorbic acid by dioxygen and the process is also effective in the presence of benzylamine giving benzaldehyde as a product, thus modeling the activity of the Cu-B site of dopamine beta-hydroxylase. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
A method is presented to model server unreliability in closed queuing networks. Breakdowns and repairs of servers, assumed to be time-dependent, are modeled using virtual customers and virtual servers in the system. The problem is thus converted into a closed queue with all reliable servers and preemptive resume priority centers. Several recent preemptive priority approximations and an approximation of the one proposed are used in the analysis. This method has approximately the same computational requirements as that of mean-value analysis for a network of identical dimensions and is therefore very efficient
Resumo:
Plastic-coated paper is shown to possess reflectivity characteristics quite similar to those of the surface of water. This correspondence has been used with a conversion factor to model a sea surface by means of plastic-coated paper. Such a paper model is then suitably illuminated and photographed, yielding physically simulated daylight imagery of the sea surface under controlled conditions. A simple example of sinusoidal surface simulation is described.
Resumo:
Thixocasting requires manufacturing of billets with non-dendritic microstructure. Aluminum alloy A356 billets were produced by rheocasting in a mould placed inside a linear electromagnetic stirrer. Subsequent heat treatment was used to produce a transition from rosette to globular microstructure. The current and the duration of stirring were explored as control parameters. Simultaneous induction heating of the billet during stirring was quantified using experimentally determined thermal profiles. The effect of processing parameters on the dendrite fragmentation was discussed. Corresponding computational modeling of the process was performed using phase-field modeling of alloy solidification in order to gain insight into the process of morphological changes of a solid during this process. A non-isothermal alloy solidification model was used for simulations. The morphological evolution under such imposed thermal cycles was simulated and compared with experimentally determined one. Suitable scaling using the thermosolutal diffusion distances was used to overcome computational difficulties in quantitative comparison at system scale. The results were interpreted in the light of existing theories of microstructure refinement and globularisation.
Resumo:
This paper reports the structural behavior and thermodynamics of the complexation of siRNA with poly(amidoamine) (PAMAM) dendrimers of generation 3 (G3) and 4 (G4) through fully atomistic molecular dynamics (MD) simulations accompanied by free energy calculations and inherent structure determination. We have also done simulation with one siRNA and two dendrimers (2 x G3 or 2xG4) to get the microscopic picture of various binding modes. Our simulation results reveal the formation of stable siRNA-dendrimer complex over nanosecond time scale. With the increase in dendrimcr generation, the charge ratio increases and hence the binding energy between siRNA and dendrimer also increases in accordance with available experimental measurements. Calculated radial distribution functions of amines groups of various subgenerations in a given generation of dendrimer and phosphate in backbone of siRNA reveals that one dendrimer of generation 4 shows better binding with siRNA almost wrapping the dendrimer when compared to the binding with lower generation dendrimer like G3. In contrast, two dendrimers of generation 4 show binding without siRNA wrapping the den-rimer because of repulsion between two dendrimers. The counterion distribution around the complex and the water molecules in the hydration shell of siRNA give microscopic picture of the binding dynamics. We see a clear correlation between water. counterions motions and the complexation i.e. the water molecules and counterions which condensed around siRNA are moved away from the siRNA backbone when dendrimer start binding to the siRNA back hone. As siRNA wraps/bind to the dendrimer counterions originally condensed onto siRNA (Na-1) and dendrimer (Cl-) get released. We give a quantitative estimate of the entropy of counterions and show that there is gain in entropy due to counterions release during the complexation. Furthermore, the free energy of complexation of IG3 and IG4 at two different salt concentrations shows that increase in salt concentration leads to the weakening of the binding affinity of siRNA and dendrimer.
Resumo:
The design of present generation uncooled Hg1-xCdxTe infrared photon detectors relies on complex heterostructures with a basic unit cell of type (n) under bar (+)/pi/(p) under bar (+). We present an analysis of double barrier (n) under bar (+)/pi/(p) under bar (+) mid wave infrared (x = 0.3) HgCdTe detector for near room temperature operation using numerical computations. The present work proposes an accurate and generalized methodology in terms of the device design, material properties, and operation temperature to study the effects of position dependence of carrier concentration, electrostatic potential, and generation-recombination (g-r) rates on detector performance. Position dependent profiles of electrostatic potential, carrier concentration, and g-r rates were simulated numerically. Performance of detector was studied as function of doping concentration of absorber and contact layers, width of both layers and minority carrier lifetime. Responsivity similar to 0.38 A W-1, noise current similar to 6 x 10(-14) A/Hz(1/2) and D* similar to 3.1 x 10(10)cm Hz(1/2) W-1 at 0.1 V reverse bias have been calculated using optimized values of doping concentration, absorber width and carrier lifetime. The suitability of the method has been illustrated by demonstrating the feasibility of achieving the optimum device performance by carefully selecting the device design and other parameters. (C) 2010 American Institute of Physics. doi:10.1063/1.3463379]
Resumo:
Stochastic behavior of an aero-engine failure/repair process has been analyzed from a Bayesian perspective. Number of failures/repairs in the component-sockets of this multi-component system are assumed to follow independent renewal processes with Weibull inter-arrival times. Based on the field failure/repair data of a large number of such engines and independent Gamma priors on the scale parameters and log-concave priors on the shape parameters, an exact method of sampling from the resulting posterior distributions of the parameters has been proposed. These generated parameter values are next utilised in obtaining the posteriors of the expected number of system repairs, system failure rate, and the conditional intensity function, which are computed using a recursive formula.
Resumo:
In this work a physically based analytical quantum threshold voltage model for the triple gate long channel metal oxide semiconductor field effect transistor is developed The proposed model is based on the analytical solution of two-dimensional Poisson and two-dimensional Schrodinger equation Proposed model is extended for short channel devices by including semi-empirical correction The impact of effective mass variation with film thicknesses is also discussed using the proposed model All models are fully validated against the professional numerical device simulator for a wide range of device geometries (C) 2010 Elsevier Ltd All rights reserved
Resumo:
Homomorphic analysis and pole-zero modeling of electrocardiogram (ECG) signals are presented in this paper. Four typical ECG signals are considered and deconvolved into their minimum and maximum phase components through cepstral filtering, with a view to study the possibility of more efficient feature selection from the component signals for diagnostic purposes. The complex cepstra of the signals are linearly filtered to extract the basic wavelet and the excitation function. The ECG signals are, in general, mixed phase and hence, exponential weighting is done to aid deconvolution of the signals. The basic wavelet for normal ECG approximates the action potential of the muscle fiber of the heart and the excitation function corresponds to the excitation pattern of the heart muscles during a cardiac cycle. The ECG signals and their components are pole-zero modeled and the pole-zero pattern of the models can give a clue to classify the normal and abnormal signals. Besides, storing only the parameters of the model can result in a data reduction of more than 3:1 for normal signals sampled at a moderate 128 samples/s