131 resultados para BRIDGING LIGAND
Resumo:
A detailed study of nickel-triethanolamine complexes has been made employing potentiometric and spectrophotometric methods. The potentiometric method has been used to investigate the conditions for the formation of both mono- and polynuclear complexes. The formulae and the stability constants of the following complexes have been determined Ni(TEA)2+, Ni(TEA)22+, and Ni2(TEA)24+. Absorption spectra of pure mononuclear complexes have been computed by the combination of potentiometric and spectrophotometric methods. The results are discussed on the basis of ligand field theory. Comparison of the step constants of the nickel-ethanolamines (mono-, di- and tri-) shows a slight chelate effect in these complexes due to coordination through hydroxyl oxygen. In the case of polynuclear complexes it is likely that bridging occurs through hydroxyl oxygen.
Resumo:
4,4prime-Bipyridyl (4,4prime-bipy) complexes of ferrous salts of the Fe(4,4prime-bipy)x(anion)y type (where x or y=1 or 2) and of ferric salts of the Fe(4,4prime-bipy)m(anion)n type (where m=1 or 2 and n=3) have been synthesised. Elemental analyses, i.r. and electronic spectra, magnetic and Mössbauer studies have been performed to characterize the complexes. 4,4prime-Bipy and some anions are inferred to act as bridging ligands. The magnetic moments, electronic and Mössbauer spectra suggest that the complexes are of high spin type with distorted octahedral structures. The value of the isomer shift and quadrupole splitting are discussed in terms of bonding of the ligand and anions.
Resumo:
using two types of organic ligands having similar chemical structure but different physical properties and varying their dynamic population at the surface of zinc blende seed nanocrystals, self-assembled zinc blende semicircular-shaped bent nanowires of CdS are synthesized via a colloidal synthetic approach. It is found that the hydrophobic tail interaction of long-chain ligands puts strain on these thin nanowires (< 2 nm diameter) and bend them to some extent, forming strained nanowires.
Resumo:
A new dicationic dihydrogen complex of the type trans-[(dppe)(2)Ru(eta (2)-H-2)(PF(OMe)(2))]BF4](2) has been prepared and characterized. A large coupling of about 50 Hz between the H-2 and trans-phosphorus ligand in this complex has been observed.
Resumo:
Kinetic measurements of enzyme activity indicate that type I pantothenate kinase from Mycobacterium tuberculosis has dual substrate specificity for ATP and GTP, unlike the enzyme from Escherichia coli, which shows a higher specificity for ATP. A molecular explanation for the difference in the specificities of the two homologous enzymes is provided by the crystal structures of the complexes of the M. tuberculosis enzyme with (1) GMPPCP and pantothenate, (2) GDP and phosphopantothenate, (3) GDP, (4) GDP and pantothenate, (5) AMPPCP, and (6) GMPPCP, reported here, and the structures of the complexes of the two enzymes involving coenzyme A and different adenyl nucleotides reported earlier. The explanation is substantially based on two critical substitutions in the amino acid sequence and the local conformational change resulting from them. The structures also provide a rationale for the movement of ligands during the action of the mycobacterial enzyme. Dual specificity of the type exhibited by this enzyme is rare. The change in locations of ligands during action,observed in the case of the M. tuberculosis enzyme, is unusual, so is the striking difference between two homologous enzymes in the geometryof the binding site, locations of ligands, and specificity. Furthermore, the dual specificity of the mycobacterial enzyme appears to have been caused by a biological necessity. (C) 2010 Elsevier Ltd.All rights reserved.
Resumo:
The extremities of chromosomes end in a G-rich single-stranded overhang that has been implicated in the onset of the replicate senescence. The repeated sequence forming a G-overhang is able to adopt a four-stranded DNA structure called G-quadruplex, which is a poor substrate for the enzyme telomerase. Small molecule based ligands that selectively stabilize the telomeric G-quadruplex DNA, induce telomere shortening eventually leading to cell death. Herein, we have investigated the G-quadruplex DNA interaction with two isomeric bisbenzimidazole-based compounds that differ in terms of shape (V-shaped angular vs linear).While the linear isomer induced some stabilization of the intramolecular G-quadruplex structure generated in the presence of Na+ the other, having V-shaped central planar core, caused a dramatic structural alteration of the latter, above a threshold concentration. This transition was evident from the pronounced changes observed in the circular dichroism spectra and from the get mobility shift assa involving the G-quadruples DNA. Notably, this angular isomer could also induce the G-quadruplex formation in the absence of any added cation. The ligand-quadruples complexes were investigated by computational molecular modeling, providing further information on structure-activity relationships. Finally, TRAP (telomerase repeat amplification protocol) experiments demonstrated that the angular isomer is selective toward the inhibition of telomerase activity.
Resumo:
The interactions of lithium perchlorate with ligands such as dimethyl sulphoxide, acetonitrile, pyridine and the Schiff base liquid crystals are investigated. The experiments open a new field for the study of metal-ion-ligand interactions in thermotropic liquid crystals.
Resumo:
Complexes of cobalt(II), nickel(II) and copper(II) with novel bidentate bibenzimidazoles, [M(L-L)Cl2], where L-L are methylenebis(1, 1prime-benzimidazole), methylenebis(2, 2prime-benzimidazole) and dimethylenebis(2, 2prime-benzimidazole) are described and characterized by different physical measurements. The four coordinate complexes have distorted tetrahedral or square coplanar structures. The bridging entity between the two donor groups apparently influences the ligand field strength and the ligands occupy a higher position than that of benzimidazole in the spectrochemical series.
Resumo:
A novel chelate exchange reaction, leading to the formation of a series of N-alkyl substituent dependent mixed ligand isomeric complexes of the type Ni(R-AB)(AC') and Ni(R-AC)(AB') (Figure 1) are discussed. Here, AB and AC denote two different N-bonded isonitroso-β-keto-imino ligand moieties, while AB' and AC' are the corresponding O-bonded ligand moieties and R is an N-alkyl substituent. The isomeric complexes are suggested to be monomeric, neutral and diamagnetic with an asymmetric square planar geometry. The bonding isomerism of the isonitroso group in these complexes is discussed on the basis of the infrared and proton magnetic resonance spectral studies. A probable mechanism for the preparative route is also proposed.
Resumo:
Distamycin and netropsin, a class of minor groove binding nonintercalating agents, are characterized by their B-DNA and A-T basespecific interactions. To understand the CQI I ~OIT~ ~ I ~ ~aOnMd ~c hemical basis of the above specificities, the DNA-binding characteristics of a novel synthetic analogue of distamycin have been studied. The analogue, mPD derivative, has the requisite charged end groups and a number of potential hydrogen-bonding loci equal to those of distamycin. The difference in the backbone curvatures of the ligands, distamycin, the mPD derivative, and NSC 101327 (another structurally analogous compound),is a major difference between these ligands. UV and CD spectrosoopic studies reported here show the following salient features: The mPD derivative recognizes only B-DNA, to which it binds via the minor groove. On the other hand, unlike distamycin, it binds with comparable affinities to A-T and G-C base pairs in a natural DNA. These DNA-binding properties are compared with those reported earlier for distamycin and NSC 101327 [Zimmer, Ch., & Wahnert, U. (1986) Prog. Biophys. Mol. Biol. 47, 31-1121. The backbone structures of these three ligands were compared to show the progressive decrease in curvatures in the order distamycin, mPD derivative, and NSC 101327. The plausible significance of the backbone curvature vis-&vis the characteristic B-DNA and AT-specific binding of distamycin is discussed. To our knowledge, this is the first attempt (with a model synthetic analogue) to probe the possible influence of backbone curvature upon the specificity of interactions of the distamycin class of groove-binding ligands with DNA.