224 resultados para Asymptotic Normality
Resumo:
Distributed space time coding for wireless relay networks when the source, the destination and the relays have multiple antennas have been studied by Jing and Hassibi. In this set-up, the transmit and the receive signals at different antennas of the same relay are processed and designed independently, even though the antennas are colocated. In this paper, a wireless relay network with single antenna at the source and the destination and two antennas at each of the R relays is considered. A new class of distributed space time block codes called Co-ordinate Interleaved Distributed Space-Time Codes (CIDSTC) are introduced where, in the first phase, the source transmits a T-length complex vector to all the relays;and in the second phase, at each relay, the in-phase and quadrature component vectors of the received complex vectors at the two antennas are interleaved and processed before forwarding them to the destination. Compared to the scheme proposed by Jing-Hassibi, for T >= 4R, while providing the same asymptotic diversity order of 2R, CIDSTC scheme is shown to provide asymptotic coding gain with the cost of negligible increase in the processing complexity at the relays. However, for moderate and large values of P, CIDSTC scheme is shown to provide more diversity than that of the scheme proposed by Jing-Hassibi. CIDSTCs are shown to be fully diverse provided the information symbols take value from an appropriate multidimensional signal set.
Resumo:
Non-linear planar response of a string to planar narrow band random excitation is investigated in this paper. A response equation for the mean square deflection σ2 is obtained under a single mode approximation by using the equivalent linearization technique. It is shown that the response is triple valued, as in the case of harmonic excitation, if the centre frequency of excitation Ω lies in a certain specified range. The triple valued response occurs only if the excitation bandwidth β is smaller than a critical value βcrit which is a monotonically increasing function of the intensity of excitation. An approximate method of investigating the almost sure asymptotic stability of the solution is presented and regions of instability in the Ω-σ2 plane have been charted. It is shown that planar response can become unstable either due to an unbounded growth of the in-plane component of motion or due to a spontaneous appearance of an out-of-plane component.
Resumo:
The flow, heat and mass transfer problem for a steady laminar incompressible boundary layer flow in an electrically conducting fluid over a longitudinal cylinder with an applied magnetic field has been studied. The partial differential equations governing the flow have been solved numerically using an implicit finite-difference scheme. The results are found to be strongly dependent on the magnetic field and dissipation parameter. The effect of the mass transfer is more pronounced on the skin friction than on the heat transfer. The results have been compared with those of the series solution, the asymptotic solution, the Glauert and Lighthill's solution, local similarity, local nonsimilarity and difference-differential methods. Good agreement is found with all of them, except with the results of the local similarity and series solution methods.
Resumo:
Pseudotwo-dimensional wakes are generated by introducing spanwise cellular structures into an otherwise plane turbulent wake by means of the castellated blunt trailing edges of different configurations. The transverse growths of these coflowing cellular wakes are found to be independent of each other without any noticeable spanwise interaction. This wake growth is examined in the light of the plane equilibrium wake analysis. Though these wakes are not found to be exactly self-similar, their growth shows a nonmonotonous approach toward the asymptotic state appropriate to that of a plane wake. The dye emission in the wakes illustrated a coherent vortical structure in the transverse plane, similar to that of the usual two-dimensional wake, in spite of the initial spanwise irregularities.
Resumo:
Galerkin representations and integral representations are obtained for the linearized system of coupled differential equations governing steady incompressible flow of a micropolar fluid. The special case of 2-dimensional Stokes flows is then examined and further representation formulae as well as asymptotic expressions, are generated for both the microrotation and velocity vectors. With the aid of these formulae, the Stokes Paradox for micropolar fluids is established.
Resumo:
The unsteady laminar compressible three-dimensional stagnation-point boundary-layer flow with variable properties has been studied when the velocity of the incident stream, mass transfer and wall temperature vary arbitrarily with time. The second-order unsteady boundary-layer equations for all the effects have been derived by using the method of matched asymptotic expansions. Both nodal and saddle point flows as well as cold and hot wall cases have been considered. The partial differential equations governing the flow have been solved numerically using an implicit finite-difference scheme. Computations have been carried out for an accelerating stream, a decelerating stream and a fluctuating stream. The results indicate that the unsteady free stream velocity distributions, the nature of the stagnation point, the mass transfer, the wall temperature and the variation of the density-viscosity product across the boundary significantly affect the skin friction and heat transfer. The variation of the wall temperature with time strongly affects the heat transfer whereas its effect is comparatively less on skin friction. Suction increases the skin friction and heat transfer but injection does the opposite. The skin friction in the x direction due to the combined effects of first- and second-order boundary layers is less than the skin-friction in the x direction due to the first-order boundary layers for all the parameters. The overall skin friction in the z direction and heat transfer are more or less than the first-order boundary layers depending upon the values of the various parameters.
Resumo:
In this paper we have discussed the motion of a viscous fluid with suspended particles through a curved tube of small curvature ratio. The system is treated as two separate interacting continua. Solutions for axial and secondary velocities are obtained in the form of asymptotic expansions in powers of Dean Number. The streamline pattern for the particulate phase reveals many interesting features. The influence of the particulate continium on the fluid is described by the parameter τ which depends on the density ratio of the two continua. The concentration distribution of the particles in a given cross section is determined. It is noticed that the particles move closer to the wall for certain values of the concentration and the density ratio.
Resumo:
Initial-value problems for the generalized Burgers equation (GBE) ut+u betaux+lambdaualpha =(delta/2)uxx are discussed for the single hump type of initial data both continuous and discontinuous. The numerical solution is carried to the self-similar ``intermediate asymptotic'' regime when the solution is given analytically by the self-similar form. The nonlinear (transformed) ordinary differential equations (ODE's) describing the self-similar form are generalizations of a class discussed by Euler and Painlevé and quoted by Kamke. These ODE's are new, and it is postulated that they characterize GBE's in the same manner as the Painlev equations categorize the Kortweg-de Vries (KdV) type. A connection problem for some related ODE's satisfying proper asymptotic conditions at x=±[infinity], is solved. The range of amplitude parameter is found for which the solution of the connection problem exists. The other solutions of the above GBE, which display several interesting features such as peaking, breaking, and a long shelf on the left for negative values of the damping coefficient lambda, are also discussed. The results are compared with those holding for the modified KdV equation with damping. Journal of Mathematical Physics is copyrighted by The American Institute of Physics.
Resumo:
We study the probability distribution of the angle by which the tangent to the trajectory rotates in the course of a plane random walk. It is shown that the determination of this distribution function can be reduced to an integral equation, which can be rigorously transformed into a differential equation of Hill's type. We derive the asymptotic distribution for very long walks.
Resumo:
Analytical solutions are presented for the effectiveness factor of a zeroth-order reaction with volume change and nonuniform catalyst activity profile in slab, cylinder and spherical pellets. The possibility of shape normalization is considered for a variety of activity profiles and pellet shapes. When the catalyst activity at the external surface of the pellet is non-zero, shape normalization is obtained, which makes the asymptotic behavior of the effectiveness factor identical for small and large values of Thiele modulus, however, the normalization can lead to significant errors, particularly for the case of activity profiles decreasing towards the outer surface of the catalyst.
Resumo:
The paper reports a detailed determination of the coexistence curve for the binary liquid system acetonitrile+cyclohexane, which have very closely matched densities and the data points get affected by gravity only for t=(Tc−T)/ Tc[approximately-equal-to]10−6. About 100 samples were measured over the range 10−6
Resumo:
The specific objective of this paper is to develop multiloop controllers that would achieve asymptotic regulation in the presence of parameter variations and disturbance inputs for a tubular reactor used in ammonia synthesis. The dynamic model considered here has nine state variables, two control inputs, and two outputs. A systematic procedure for pairing the two inputs with the corresponding two outputs is presented. The two multiloop proportional controllers so configured are designed via the parameter plane method. This economic configuration of controllers maintains the temperature profile almost at the optimal value whereas the point controllers fail to do so.
Resumo:
The unified structure of steady, one-dimensional shock waves in argon, in the absence of an external electric or magnetic field, is investigated. The analysis is based on a two-temperature, three-fluid continuum approach, using the Navier—Stokes equations as a model and including non-equilibrium collisional as well as radiative ionization phenomena. Quasi charge neutrality and zero velocity slip are assumed. The integral nature of the radiative terms is reduced to analytical forms through suitable spectral and directional approximations. The analysis is based on the method of matched asymptotic expansions. With respect to a suitably chosen small parameter, which is the ratio of atom-atom elastic collisional mean free-path to photon mean free-path, the following shock morphology emerges: within the radiation and electron thermal conduction dominated outer layer occurs an optically transparent discontinuity which consists of a chemically frozen heavy particle (atoms and ions) shock and a collisional ionization relaxation layer. Solutions are obtained for the first order with respect to the small parameter of the problem for two cases: (i) including electron thermal conduction and (ii) neglecting it in the analysis of the outer layer. It has been found that the influence of electron thermal conduction on the shock structure is substantial. Results for various free-stream conditions are presented in the form of tables and figures.
Resumo:
The mean flow development in an initially turbulent boundary layer subjected to a large favourable pressure gradient beginning at a point x0 is examined through analyses expected a priori to be valid on either side of relaminarization. The ‘quasi-laminar’ flow in the later stages of reversion, where the Reynolds stresses have by definition no significant effect on the mean flow, is described by an asymptotic theory constructed for large values of a pressure-gradient parameter Λ, scaled on a characteristic Reynolds stress gradient. The limiting flow consists of an inner laminar boundary layer and a matching inviscid (but rotational) outer layer. There is consequently no entrainment to lowest order in Λ−1, and the boundary layer thins down to conserve outer vorticity. In fact, the predictions of the theory for the common measures of boundary-layer thickness are in excellent agreement with experimental results, almost all the way from x0. On the other hand the development of wall parameters like the skin friction suggests the presence of a short bubble-shaped reverse-transitional region on the wall, where neither turbulent nor quasi-laminar calculations are valid. The random velocity fluctuations inherited from the original turbulence decay with distance, in the inner layer, according to inverse-power laws characteristic of quasi-steady perturbations on a laminar flow. In the outer layer, there is evidence that the dominant physical mechanism is a rapid distortion of the turbulence, with viscous and inertia forces playing a secondary role. All the observations available suggest that final retransition to turbulence quickly follows the onset of instability in the inner layer.It is concluded that reversion in highly accelerated flows is essentially due to domination of pressure forces over the slowly responding Reynolds stresses in an originally turbulent flow, accompanied by the generation of a new laminar boundary layer stabilized by the favourable pressure gradient.
Resumo:
Input-output stability of linear-distributed parameter systems of arbitrary order and type in the presence of a distributed controller is analyzed by extending the concept of dissipativeness, with certain modifications, to such systems. The approach is applicable to systems with homogeneous or homogenizable boundary conditions. It also helps in generating a Liapunov functional to assess asymptotic stability of the system.