65 resultados para Antimicrobial enzymes
Resumo:
Chemically synthesized ``pro-sensitizers'' release the sensitizer in the presence of lipase or beta-glucosidase, triggering a significant luminescence response from a lanthanide based hydrogel.
Resumo:
A novel in situ core@shell structure consisting of nanoparticles of Ag (Ag Nps) and AgI in agarose matrix (Ag@ AgI/agarose) has been synthesized as a hybrid, in order to have an efficient antibacterial agent for repetitive usage with no toxicity. The synthesized core@shell structure is very well characterized by XRD, UV-visible, photoluminescence, and TEM. A detailed antibacterial studies including repetitive cycles are carried out on Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) bacteria in saline water, both in dark and on exposure to visible light. The hybrid could be recycled for the antibacterial activity and is nontoxic toward human cervical cancer cells (HeLa cells). The water insoluble Ag@AgI in agarose matrix forms a good coating on quartz, having good mechanical strength. EPR and TEM studies are carried out on the Ag@AgI/agarose and the bacteria, respectively, to elucidate a possible mechanism for killing of the bacteria.
Resumo:
A series of 1,4-disubstituted 1,2,3-bistriazoles was synthesized via click chemistry by cycloaddition of various bisalkynes with benzyl/2-phenylethyl azide. Synthesized triazoles were characterized by IR, H-1 NMR, C-13 NMR and mass spectral techniques. All the compounds were evaluated for antibacterial/antifungal activities and found to possess moderate to good antimicrobial activities. Further the docking study for the most active compound against DNA Gyrase was also carried out. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
A new class of sulfone linked bis heterocycles viz., pyrrolyl/pyrazolyl arylaminosulfonylmethyl 1,3,4-oxadiazoles, 1,3,4-thiadiazoles, and 1,2,4-triazoles were prepared and tested for antimicrobial activity and cytotoxicity. The chloro-substituted compounds 5c, 8c and 14c showed comparable antibacterial activity to chloramphenicol against Pseudomonasaeruginosa and compound 5c exhibited comparable antifungal activity to ketoconazole against Penicilliumchrysogenum. One of the compounds, vinylsulfonyl oxadiazole showed appreciably cytotoxic activity on A549 lung carcinoma cells with an IC50 at a concentration of 31.7 mu M. (C) 2012 Elsevier Masson SAS. All rights reserved.
Resumo:
New ternary copper (II) complexes, Cu(L-orn)(B)(Cl)](Cl center dot 2H(2)O) (1-2) where L-orn is L-ornithine, B is an N,N-donor heterocyclic base, viz. 2,2'-bipyridine (bpy, 1) and 1,10-phenanthroline (phen, 2), were synthesized and characterized by various spectroscopic techniques. Complex 2 is characterized by the X-ray single crystallographic method. The complex shows a distorted square-pyramidal (4 + 1) CuN3OCl coordination sphere. Binding interactions of the complexes with calf thymus DNA (CT-DNA) were investigated by UV-Vis absorption titration, ethidium bromide displacement assay, viscometric titration experiment and DNA melting studies. Complex 2 shows appreciable chemical nuclease activity in the presence of 3-mercaptopropionic acid (MPA). The complexes were subjected to in vitro cytotoxicity studies against carcinomic human alveolar basal epithelial cells (A-549) and human epithelial (HEp-2) cells. The IC50 values of 1 and 2 are less than that of cisplatin against HEp-2 cell lines. MIC values for 1 against the bacterial strains Streptococcus mutans and Pseudomonas aeruginosa are 0.5 mM. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Typhoidal and non-typhoidal infection by Salmonella is a serious threat to human health. Ciprofloxacin is the last drug of choice to clear the infection. Ciprofloxacin, a gyrase inhibitor, kills bacteria by inducing chromosome fragmentation, SOS response and reactive oxygen species (ROS) in the bacterial cell. Curcumin, an active ingredient from turmeric, is a major dietary molecule among Asians and possesses medicinal properties. Our research aimed at investigating whether curcumin modulates the action of ciprofloxacin. We investigated the role of curcumin in interfering with the antibacterial action of ciprofloxacin in vitro and in vivo. RTPCR, DNA fragmentation and confocal microscopy were used to investigate the modulation of ciprofloxacin-induced SOS response, DNA damage and subsequent filamentation by curcumin. Chemiluminescence and nitroblue tetrazolium reduction assays were performed to assess the interference of curcumin with ciprofloxacin-induced ROS. DNA binding and cleavage assays were done to understand the rescue of ciprofloxacin-mediated gyrase inhibition by curcumin. Curcumin interferes with the action of ciprofloxacin thereby increasing the proliferation of Salmonella Typhi and Salmonella Typhimurium in macrophages. In a murine model of typhoid fever, mice fed with curcumin had an increased bacterial burden in the reticuloendothelial system and succumbed to death faster. This was brought about by the inhibition of ciprofloxacin-mediated downstream signalling by curcumin. The antioxidant property of curcumin is crucial in protecting Salmonella against the oxidative burst induced by ciprofloxacin or interferon (IFN), a pro-inflammatory cytokine. However, curcumin is unable to rescue ciprofloxacin-induced gyrase inhibition. Curcumins ability to hinder the bactericidal action of ciprofloxacin and IFN might significantly augment Salmonella pathogenesis.
Resumo:
New metal complexes of the type M(nih)(L)](PF6)(n)center dot xAH(2)O and M(nih)(2)](PF6)center dot xH(2)O (where M = Co(III) or Ni(II), L = 1,10-phenanthroline (phen)/or 2,2' bipyridine (bpy), nih = 2-hydroxy-1-naphthaldehyde isonicotinoyl hydrazone, n = 2 or 1 and x = 3 or 2) have been synthesized and characterized by elemental analysis, magnetic, IR and H-1 NMR spectral data. The electronic and magnetic moment 2.97-3.07 B.M. data infers octahedral geometry for all the complexes. The IR data reveals that Schiff base (nih) form coordination bond with the metal ion through azomethine-nitrogen, phenolic-oxygen and carbonyl-oxygen in a tridentate fashion. In addition, DNA-binding properties of these six metal complexes were investigated using absorption spectroscopy, viscosity measurements and thermal denaturation methods. The results indicated that the nickel(II) complex strongly bind with calf-thymus DNA with intrinsic DNA binding constant K-b value of 4.9 x 10(4) M-1 for (3), 4.2 x 10(4) M-1 for (4), presumably via an intercalation mechanism compared to cobalt(III) complex with K-b value of 4.6 x 10(4) M-1 (1) and 4.1 x 10(4) M-1 (2). The DNA Photoclevage experiment shows that, the complexes act as effective DNA cleavage agent. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
A new class of sulfonamidomethane pyrrolyl-oxadiazoles/thiadiazoles and pyrazolyl-oxadiazoles/thiadiazoles was prepared from arylsulfonylaminoacetic acid hydrazides and E-cinnamic acid. The lead compounds were tested for antimicrobial and cytotoxic activities. The thiadiazole compounds having chloro substituent on the aromatic ring 4c, 8c and 10c exhibited comparable antibacterial activity against Pseudomonas aeruginosa and also antifungal activity against Penieillium ehrysogenunz. The styryl oxadiazole compound 3c showed appreciable cytotoxic activity on A549 lung carcinoma cells which can be used as a lead compound in the future studies.
Resumo:
In this Letter, we report the structure activity relationship (SAR) studies on series of positional isomers of 5(6)-bromo-1-(phenyl)sulfonyl]-2-(4-nitrophenoxy)methyl]-1H-benzim idazoles derivatives 7(a-j) and 8(a j) synthesized in good yields and characterized by H-1 NMR, C-13 NMR and mass spectral analyses. The crystal structure of 7a was evidenced by X-ray diffraction study. The newly synthesized compounds were evaluated for their in vitro antibacterial activity against Staphylococcus aureus, (Gram-positive), Escherichia coil and Klebsiella pneumoniae (Gram-negative), antifungal activity against Candida albicans, Aspergillus flavus and Rhizopus sp. and antitubercular activity against Mycobacterium tuberculosis H37Rv, Mycobacterium smegmatis, Mycobacterium fortuitum and MDR-TB strains. The synthesized compounds displayed interesting antimicrobial activity. The compounds 7b, 7e and 7h displayed significant activity against Mycobacterium tuberculosis H37Rv strain.
Interaction of Silver Nanoparticles with Serum Proteins Affects Their Antimicrobial Activity In Vivo
Resumo:
The emergence of multidrug-resistant bacteria is a global threat for human society. There exist recorded data that silver was used as an antimicrobial agent by the ancient Greeks and Romans during the 8th century. Silver nanoparticles (AgNPs) are of potential interest because of their effective antibacterial and antiviral activities, with minimal cytotoxic effects on the cells. However, very few reports have shown the usage of AgNPs for antibacterial therapy in vivo. In this study, we deciphered the importance of the chosen methods for synthesis and capping of AgNPs for their improved activity in vivo. The interaction of AgNPs with serum albumin has a significant effect on their antibacterial activity. It was observed that uncapped AgNPs exhibited no antibacterial activity in the presence of serum proteins, due to the interaction with bovine serum albumin (BSA), which was confirmed by UV-Vis spectroscopy. However, capped AgNPs with citrate or poly(vinylpyrrolidone)] exhibited antibacterial properties due to minimized interactions with serum proteins. The damage in the bacterial membrane was assessed by flow cytometry, which also showed that only capped AgNPs exhibited antibacterial properties, even in the presence of BSA. In order to understand the in vivo relevance of the antibacterial activities of different AgNPs, a murine salmonellosis model was used. It was conclusively proved that AgNPs capped with citrate or PVP exhibited significant antibacterial activities in vivo against Salmonella infection compared to uncapped AgNPs. These results clearly demonstrate the importance of capping agents and the synthesis method for AgNPs in their use as antimicrobial agents for therapeutic purposes.
Resumo:
A simple and efficient protocol for the synthesis of novel 2,6-bis(4-methoxyphenyl)-1-methylpiperidin-4-one oxime esters 4(a-q) is described. Initially, p-anisaldehyde 1 was condensed (Mannich reaction) with acetone and ammonium acetate trihydrate afforded 2,6-bis(4-methoxyphenyl)piperidin-4-one 2. Then, methylation followed by oximation with hydroxylamine hydrochloride (NH(2)OHa (TM) HCl) furnished a key scaffold 4. Further, to explore the enhanced biological properties of the piperidin-4-one core i.e. the key scaffold 4 was conjugated with substituted benzoyl chlorides in the presence of anhydrous K2CO3 as base to obtain novel 2,6-bis(4-methoxyphenyl)-1-methylpiperidin-4-one oxime esters 4(a-q) in excellent yields. The newly synthesized compounds were characterized by elemental analysis, IR, H-1 NMR, C-13 NMR and mass spectroscopic techniques, and screened for their in vitro antioxidant and antimicrobial activities. Most of the compounds exerted positive efficacy towards the biological assays performed. Among the synthesized analogues, compounds 4l and 4m exhibited promising antioxidant activity and on the other hand compounds 4b and 4d manifested persuasive antibacterial activity, whereas compound 4b displayed stupendous antifungal activity against A. flavus strain.
Resumo:
Restriction endonucleases interact with DNA at specific sites leading to cleavage of DNA. Bacterial DNA is protected from restriction endonuclease cleavage by modifying the DNA using a DNA methyltransferase. Based on their molecular structure, sequence recognition, cleavage position and cofactor requirements, restriction-modification (R-M) systems are classified into four groups. Type III R-M enzymes need to interact with two separate unmethylated DNA sequences in inversely repeated head-to-head orientations for efficient cleavage to occur at a defined location (25-27 bp downstream of one of the recognition sites). Like the Type I R-M enzymes, Type III R-M enzymes possess a sequence-specific ATPase activity for DNA cleavage. ATP hydrolysis is required for the long-distance communication between the sites before cleavage. Different models, based on 1D diffusion and/or 3D-DNA looping, exist to explain how the long-distance interaction between the two recognition sites takes place. Type III R-M systems are found in most sequenced bacteria. Genome sequencing of many pathogenic bacteria also shows the presence of a number of phase-variable Type III R-M systems, which play a role in virulence. A growing number of these enzymes are being subjected to biochemical and genetic studies, which, when combined with ongoing structural analyses, promise to provide details for mechanisms of DNA recognition and catalysis.
Resumo:
A variety of pyrimidinyl benzoxazoles, benzothiazoles and benzimidazoles linked by thio, methylthio and amino moieties were prepared and studied their antimicrobial and cytotoxic activities. The compound pyrimidinyl bis methylthio benzimidazole 22 was a potent antimicrobial agent particularly against Staphylococcus aureus (29 mm, MIC 12.5 mu g/mL) and Penicillium chrysogenum (38 mm, MIC 12.5 mu g/mL). The amino linked pyrimidinyl bis benzothiazole 24 exhibited cytotoxic activity on A549 cells with IC50 value of 10.5 mu M. (C) 2014 Elsevier Masson SAS. All rights reserved.
Resumo:
Hybrid nanocomposites of polycaprolactone (PCL) with multiwall carbon nanotubes (MWNTs) and silver nanoparticles (nAg) were prepared by melt mixing. Synergetic effect of the two nanofillers (MWNT and nAg) in PCL matrix was evaluated for dielectric and antibacterial properties. Dielectric results showed that the addition of nAg as filler in PCL matrix (PCL/nAg) had no effect on conductivity, whereas addition of MWNT in PCL matrix (PCL/MWNT) caused a sharp increase in conductivity of PCL. Interestingly, the hybrid nanocomposite (PCL/MWNT/nAg) incorporating MWNT and nAg also exhibited high electrical conductivity. The hybrid composite was found to have antibacterial property similar to that of PCL/nAg composite for lower loading of nAg. This study demonstrates that the synergetic interaction of the nanofillers in the hybrid nanocomposite improves both electrical conductivity and antibacterial properties of PCL.
Resumo:
Enzymes utilizing pyridoxal 5'-phosphate dependent mechanism for catalysis are observed in all cellular forms of living organisms. PLP-dependent enzymes catalyze a wide variety of reactions involving amino acid substrates and their analogs. Structurally, these ubiquitous enzymes have been classified into four major fold types. We have carried out investigations on the structure and function of fold type I enzymes serine hydroxymethyl transferase and acetylornithine amino transferase, fold type n enzymes catabolic threonine deaminase, D-serine deaminase, D-cysteine desulfhydrase and diaminopropionate ammonia lyase. This review summarizes the major findings of investigations on fold type II enzymes in the context of similar studies on other PLP-dependent enzymes. Fold type II enzymes participate in pathways of both degradation and synthesis of amino acids. Polypeptide folds of these enzymes, features of their active sites, nature of interactions between the cofactor and the polypeptide, oligomeric structure, catalytic activities with various ligands, origin of specificity and plausible regulation of activity are briefly described. Analysis of the available crystal structures of fold type II enzymes revealed five different classes. The dimeric interfaces found in these enzymes vary across the classes and probably have functional significance.