130 resultados para Amine ligands
Resumo:
Mononuclear, binuclear and trinuclear silver(l) complexes were obtained unexpectedly while probing the reactivity of diphosphazane ligands of the type X2PN(Pr-i)PXY towards the ruthenium-based precursor Ru(bipy)(2)Cl-2 center dot 2H(2)O, in the presence of a silver salt as a chloride scavenger. Subsequently, the reactions of AgX [X = Cl, NO3 or CF3SO3] with Ph2PN(R)PPh(Y) [R = H, Y = Ph; R = Pr-i, Y = Ph or OC6H3Me2-2,6] in a 1: 1 or 1:2 molar ratio have been investigated. Mononuclear or binuclear Ag(I) complexes containing either chelating or bridging diphosphazane ligands are obtained. Trinuclear silver(l) complexes are accessible by the treatment of diphosphazane ligands, Ph2PN(R)PPh2 [R = H, Pr-i] with AgCl using piperidine as the solvent. In the presence of a suitable chloride donor species, the mononuclear and binuclear complexes of Ph2PN(Pr-i)PPh2 are transformed slowly to the trinuclear complex [Ag-3(mu-Cl)(2){Ph2PN(Pr-i)PPh2}(3)]X, over a period 20 h. The structures of representative complexes have been confirmed by X-ray crystallography and the salient structural features are discussed
Resumo:
An organically templated iron(II) sulfate of the composition [H3N(CH2)2NH2(CH2)2(NH3]4[FeII 9F18(SO4)6]â9H2O with a distorted Kagome structure has been synthesized under solvothermal conditions in the presence of diethylenetriamine. The distortion of the hexagonal bronze structure comes from the presence of two different types of connectivity between the FeF4O2 octahedra and the sulfate tetrahedra. This compound exhibits magnetic properties different from those of an Fe(II) compound with a perfect Kagome structure and is a canted antiferromagnet at low temperatures.
Resumo:
A new dicationic dihydrogen complex of the type trans-[(dppe)(2)Ru(eta (2)-H-2)(PF(OMe)(2))]BF4](2) has been prepared and characterized. A large coupling of about 50 Hz between the H-2 and trans-phosphorus ligand in this complex has been observed.
Resumo:
Members of the receptor-guanylate cyclase (rGC) family possess an intracellular catalytic domain that is regulated by an extracellular receptor domain. GC-C, an intestinally expressed rGC, was initially cloned by homology as an orphan receptor. The search for its Ligands has yielded three candidates: STa (a bacterial toxin that causes traveler's diarrhea) and the endogenous peptides uroguanylin and guanylin. Here, by performing Northern and Western blots, and by measuring [I-125]STa binding and STa-dependent elevation of cGMP levels, we investigate whether the distribution of GC-C matches that of its endogenous ligands in the rat intestine. We establish that 1) uroguanylin is essentially restricted to small bowel; 2) guanylin is very low in proximal small bowel, increasing to prominent levels in distal small bowel and throughout colon; 3) GC-C messenger RNA and STa-binding sites are uniformly expressed throughout the intestine; and 4) GC-C-mediated cGMP synthesis peaks at the proximal and distal extremes of the intestine (duodenum and colon), but is nearly absent in the middle (ileum). These observations suggest that GC-C's activity may be posttranslationally regulated, demonstrate that the distribution of GC-C is appropriate to mediate the actions of both uroguanylin and guanylin, and help to refine current hypotheses about the physiological role(s) of these peptides.
Resumo:
Microporous polybenzimidazole of 250–500 μm spherical bead size from Celanese has been reacted with epichlorohydrin and sodium hydroxide and the resulting product with pendant epoxy groups has been reacted with various chelating ligands in order to augment the metal sorption capacity and selectivity of the resin. The chelating ligands used include ethylenediamine, diethylenetriamine, diethanolamine, dimethylglyoxime, L-cysteine, thiourea, dithiooxamide, glyoxal-bis-2-hydroxyanil, salicylaldehyde-ethylenediimine, and glyoxal-bis-2-mercaptoanil. The aminolysis of the pendant epoxy groups with the oligoamines has been performed in pyridine under reflux conditions, while the addition reactions with the other ligands which are alkali soluble have been carried out at room temperature in a mixture of dioxane and aqueous KOH using tetra-n-butylammonium iodide as the phase transfer catalyst. The products are found to possess high capacity and selectivity in metal sorption depending on the ligand attached.
Resumo:
Uracil N-glycosylase (Ung) is the most thoroughly studied of the group of uracil DNA-glycosylase (UDG) enzymes that catalyse the first step in the uracil excision-repair pathway. The overall structure of the enzyme from Mycobacterium tuberculosis is essentially the same as that of the enzyme from other sources. However, differences exist in the N- and C-terminal stretches and some catalytic loops. Comparison with appropriate structures indicate that the two-domain enzyme closes slightly when binding to DNA, while it opens slightly when binding to the proteinaceous inhibitor Ugi. The structural changes in the catalytic loops on complexation reflect the special features of their structure in the mycobacterial protein. A comparative analysis of available sequences of the enzyme from different sources indicates high conservation of amino-acid residues in the catalytic loops. The uracil-binding pocket in the structure is occupied by a citrate ion. The interactions of the citrate ion with the protein mimic those of uracil, in addition to providing insights into other possible interactions that inhibitors could be involved in.
Resumo:
DNA adopts different conformations not only based on novel base pairs, but also with different chain polarities. Besides several duplex structures (A, B, Z, parallel stranded (ps)-DNA, etc.), DNA also forms higher-order structures like triplex, tetraplex, and i-motif. Each of these structures has its own biological significance. The ps-duplexes have been found to be resistant to certain nucleases and endonucleases. Molecules that promote triple-helix formation have significant potential. These investigations have many therapeutic advantages which may be useful in the regulation of the expression of genes responsible for certain diseases by locking either their transcription (antigene) or translation (antisense). Each DNA minor groove binding ligand (MGBL) interacts with DNA through helical minor groove recognition in a sequence-specific manner, and this interferes with several DNA-associated processes. Incidentally, these ligands interact with some non-B-DNA and with higher-order DNA structures including ps-DNA and triplexes. While the design and recognition of minor grooves of duplex DNA by specific MGBLs have been a topic of many reports, limited information is available on the binding behavior of MGBLs with nonduplex DNA. In this review, we summarize various attempts of the interaction of MGBLs with ps-DNA and DNA triplexes.
Resumo:
The crystal structures and magnetic properties of five new transition metal-azido complexes with two anionic [pyrazine-2-carboxylate (pyzc) and p-aminobenzoate (paba)] and two neutral [pyrazine (pyz) and pyridine (py)] coligands are reported All five complexes were synthesized bysolvothermal methods The complex [Co-2(pyzc)(2)(N-3)(2)(H2O)(2)](n) (1) is 1D and exhibit canted antiferromagnetism, while the 3D complex [MnNa(pyzc)(N-3)(2)(H2O)(2)](n) (2) has a complicated structure and is weakly ferromagnetic in nature [Mn-2(paba)(2)(N-3)(2)(H2O)(2)](n) (3). is a 2D sheet and the Mn-II ions are found to be antiferromagnetically coupled The isostructural 2D complexes [Cu-3(pyz)(2)(N-3)(6)](n) (4) and [Cu-3(py)(2)(N-3)(6)](n) (5) resemble remarkably in their magnetic properties exhibiting moderately strong ferromagnetism. Density functional theory calculations (B3LYP functional) have been performed to provide a qualitative theoretical interpietation of the overall magnetic behavior shown by these complexes.
Resumo:
The initial structural alteration of RNAase A due to acid denaturation (0.5 N HCl, 30 degrees C) that accompanies deamidation (without altering enzymic activity) has been dectected by spectrophotometric titration, fluorescence and ORD/CD measurements. It is shown that acid treated RNAase A has an altered conformation at neutral pH, 25 degrees C. This is characterized by the increased accessibility of buried tyrosine residue(s) towards the solvent. The most altered conformation of RNAase A is found in the 10 h acid-treated derivative. This has about 1.5 additional exposed tyrosine residues and a lesser amount of secondary structure than RNAase A. All three methods (titration, fluorescence and CD) established that the structural transition of RNAase A is biphasic. The first phase occurs within 1 h and the resulting subtle conformational change is constant up to 7 h. Following this, after the release of 0.55 mol of ammonia, the major conformational change begins. The altered conformation of the acid-denatured RNAase A could be reversed completely to the native state through a conformational change induced by substrate analogs like 2'- or 3'-CMP. Thus the monodeamidated derivative isolated from the acid-denatured RNAase A by phosphate is very similar to RNAase A in over-all conformation. The results suggest the possibility of flexibility in the RNAase A molecule that does not affect its catalytic activity, as probed through the tyrosine residues.
Resumo:
The C-nitrosation of bivalent quadridentate β-imino ketone complexes of nickel(II), copper(II), and palladium(II), with nitrosating reagents has been investigated. The chemical analysis and spectroscopic results reveal that one of the α-CH groups of the coordinated lignad undergoes selective nitrosation forming mono(hydroxyimino) derivative. The hydroxyimino group introduced coordinates through either N- or O- atom to metal(II) by dislodging the carbonyl group already coordinated. This gives rise to two linkage isomers, one with N-bonded and the other with O-bonded hydroxyimino group in the case of nickel(II) (except for 1d) and palladium(II), and a single isomer with O-bonded hydroxyimino group in copper(II) complexes. The isomers obtained from 1b and 1i have been separated by column chromatography. In chloroform each of the isomers of nickel(II) isomerizes to give an equilibrium mixture of two isomers, but not those of copper(II) and palladium(II).
Resumo:
Five new gallium arsenate compounds C2N2H10]Ga(H2AsO4)(HAsO4)(2)]center dot H2O, I; C2N2H10]Ga(OH)(AsO4)](2), II; C2N2H10]GaF(AsO4)](2), III; C3N2H12]Ga(OH)(AsO4)](2), IV; Ga2F3(AsO4)(HAsO4)]center dot 2H(3)O, V, have been synthesized under hydrothermal conditions and the structures determined employing single crystal X-ray diffraction studies. All the structures consist of octahedral gallium and tetrahedral arsenate units connected together forming a hierarchy of structures. Thus, one- (I), two- (II and IV) and three-dimensionally (III and V) extended structures have been observed. The Ga-O(H)/F-Ga connectivity in some of the structures suggests the coordination requirements posed by the octahedral gallium in these compounds. The observation of only one type of secondary building unit in the structures of III (SBU-4) and V (spiro-5) is unique and noteworthy. All the compounds have been characterized by a variety of techniques that include powder XRD, IR, and TGA. (C) 2010 Elsevier B. V. All rights reserved.
Resumo:
Research on structure and magnetic properties of polynuclear metal complexes to understand the structural and chemical factors governing the electronic exchange coupling mediated by multi-atom bridging ligands is of growing interest. Hydrothermal treatment of Ni(NO3)(2)center dot 6H(2)O with N-(4-carboxyphenyl)iminodiacetic acid N-4(H(3)CPIDA)] at 150 degrees C yielded a 3D coordination polymer of general formula Ni-3{N-4( CPIDA)}(2)(H2O)(3)]center dot 6H(2)O (1). An analogous network of general formula Co-3{N-3(CPIDA)}(2)(H2O)(3)]center dot 3H(2)O (2) was synthesized using N-(3-carboxyphenyl) iminodiacetic acid N-3(H(3)CPIDA)] in combination with Co(NO3)(2)center dot 6H(2)O under identical reaction condition. Both the complexes contain trinuclear secondary building unit, and crystallized in monoclinic system with space groups C2/c (1) and P2(1)/c (2), respectively. Variable temperature magnetic characterization of these complexes in the temperature range of 2-300 K indicated the presence of overall ferromagnetic and antiferromagnetic behavior for 1 and 2, respectively. Density functional theory calculations (B3LYP functional) were performed for further insight on the trinuclear units to provide a qualitative theoretical interpretation on the overall magnetic behavior of the complexes 1 and 2. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Reactions of group 6 metal carbonyls with bis(pyrazolyl) phosphazenes yield metal tricarbonyl complexes, [M(CO)3.L] [L = N3P3Ph4 (3, 5-Me2C3HN2)2 (1) or N3P3(MeNCH2CH2O)2 (3,5-Me2C3HN2)2(4)]. The structure of the complex [Mo(CO)3.1], determined by single-crystal X-ray analysis, shows that the (pyrazolyl) phosphazene acts as a tridentate ligand; the two pyridinic pyrazolyl nitrogen atoms and a phosphazene ring nitrogen atom are coordinated to the metal. A similar structure is proposed for the complexes [M(CO)3.4] (M = Mo or W] on the basis of their spectroscopic data.