54 resultados para Agents turístics
Resumo:
In this report, we present cationic dimeric (gemini) lipids for significant plasmid DNA (pDNA) delivery to different cell lines without any marked toxicity in the presence of serum. Six gemini lipids based on alpha-tocopherol were synthesized, which differed in their spacer chain lengths. Each of these gemini lipids mixed with a helper lipid, 1,2-dioleoyl phosphatidyl ethanolamine (DOPE), was capable of forming stable aqueous suspensions. These co-liposomal systems were examined for their potential to transfect pEGFP-C3 plasmid DNA into nine cell lines of different origins. The transfection efficacies noticed in terms of EGFP expression levels using flow cytometry were well corroborated using independent fluorescence microscopy studies. Significant EGFP expression levels were reported using the gemini co-liposomes, which counted significantly better than one well known commercial formulation, Lipofectamine 2000 (L2 K). Transfection efficacies were also analyzed in terms of the degree of intracellular delivery of labeled plasmid DNA (pDNA) using confocal microscopy, which revealed an efficient internalization in the presence of serum. The cell viability assays performed using optimized formulations demonstrated no significant toxicity towards any of the cell lines used in the study. We also had a look at the lipoplex internalization pathway to profile the uptake characteristics. A caveolae/lipid raft route was attributed to their excellent gene transfection capabilities. The study was further advanced by using a therapeutic p53-EGFP-C3 plasmid and the apoptotic activity was observed using FACS and growth inhibition assay.
Resumo:
A convenient and efficient one-pot synthesis of benzofurans 3a, 3b, 3c, 3d, 3e, 3f, 3g, 3h, 3i, 3j, 3k, 3l, 3m, 3n, 3o, 3p, 3q, 3r, 3s, 3t has been described from 2-hydroxy acetophenones and phenacyl chlorides in the presence of DBU. The procedure was applicable for a variety of phenacyl chlorides and provides a variety of benzofurans with higher yields. DBU acts as a base and as well as nucleophiles. All the derivatives were subjected to in vitro antioxidant screenings against representative 2,2-diphenyl-1-picryl-hydrazyl and 2,2-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) radicals and results worth for further investigations.
Resumo:
New N'-2-oxo-1,2-dihydro-3H-indol-3-ylidene]benzohydrazide derivatives were synthesized and evaluated for their cytotoxic properties against murine leukemia, L1210, human leukemia, REH and K562, human T-cell leukemia, CEM and human cervix carcinoma, HeLa cells. Among the tested compounds, the 3,4,5-trimethoxy-N'-5-methyl-2-oxo-1,2-dihydro-3H-indol-3-ylidene]ben zohydrazide derivative (5t) emerged as the most potent inhibitor against all the tumor cell lines evaluated. To investigate the mechanism of action, 5t was further studied by cell cycle analysis, mitochondrial membrane potential analysis, DNA fragmentation and Annexin V-FITC flow cytometric analysis, which suggested that 5t was able to induce apoptosis at submicromolar range.
Resumo:
The study reports chiral sensing properties of RNA nucleosides. Adenosine, guanosine, uridine and cytidine are used as chiral derivatizing agents to differentiate chiral 1 degrees-amines. A three component protocol has been adopted for complexation of nucleosides and amines. The chiral differentiating ability of nucleosides is examined for different amines based on the H-1 NMR chemical shift differences of diastereomers (Delta delta(R,S)). Enantiomeric differentiation has been observed at multiple chemically distinct proton sites. Adenosine and guanosine exhibit large chiral differentiation (Delta delta(R,S)) due to the presence of a purine ring. The diastereomeric excess (de) measured by using adenosine is in good agreement with the gravimetric values.
Resumo:
A series of 2,5-di(4-aryloylaryloxymethyl)-1,3,4-oxadiazoles 9a-j were obtained via multistep synthesis from hydroxybenzophenones 4a-e. The cytotoxicity of compounds 9a-j was evaluated against human leukemia cell lilies (K562 and CEM). The compounds exhibited moderate to good anti-cancer activity with compounds 9b and 9i having a chloro group exhibiting the best activity (IC50 = 10 mu M). Compound 9i exhibited activity against both the cell lines and 9b only exhibited activity against CEM. Further, a lactate dehydrogenase (LDH) assay and DNA fragmentation studies of the compounds 9a-j were also performed. (C) 2013 Elsevier Masson SAS. All rights reserved.
Resumo:
Organophosphorus-based nerve agents, such as paraoxon, parathion, and malathion, inhibit acetylcholinesterase, which results in paralysis, respiratory failure, and death. Bacteria are known to use the enzyme phosphotriesterase (PTE) to break down these compounds. In this work, we designed vacancy-engineered nanoceria (VE CeO2 NPs) as PTE mimetic hotspots for the rapid degradation of nerve agents. We observed that the hydrolytic effect of the nano-material is due to the synergistic activity between both Ce3+ and Ce4+ ions located in the active site-like hotspots. Furthermore, the catalysis by nanoceria overcomes the product inhibition generally observed for PTE and small molecule-based PTE mimetics.
Resumo:
Enzyme-and pH-responsive polyelectrolyte nanocapsules having diameters in the range of 200 +/- 20 nm were fabricated by means of Layer-by-Layer assembly of biopolymers, protamine, and heparin, and then loaded with anticancer drug doxorubicin. The incorporation of the FDA-approved peptide drug protamine as a wall component rendered the capsules responsive to enzyme stimuli. The stimuli-responsive drug release from these nanocapsules was evaluated, and further modulation of capsule permeability to avoid premature release was demonstrated by crosslinking the wall components. The interaction of the nanocapsules with cancer cells was studied using MCF-7 breast cancer cells. These capsules were readily internalized and disintegrated inside the cells, culminating in the release of the loaded doxorubicin and subsequent cell death as observed by confocal microscopy and MTT Assay. The bioavailability studies performed using BALB/c mice revealed that the encapsulated doxorubicin exhibited enhanced bioavailability compared to free doxorubicin. Our results indicate that this stimuli-responsive system fabricated from clinically used FDA-approved molecules and exhibiting minimal premature release has great potential for drug-delivery applications.
Resumo:
Organophosphorus-based nerve agents, such as paraoxon, parathion, and malathion, inhibit acetylcholinesterase, which results in paralysis, respiratory failure, and death. Bacteria are known to use the enzyme phosphotriesterase (PTE) to break down these compounds. In this work, we designed vacancy-engineered nanoceria (VE CeO2 NPs) as PTE mimetic hotspots for the rapid degradation of nerve agents. We observed that the hydrolytic effect of the nano-material is due to the synergistic activity between both Ce3+ and Ce4+ ions located in the active site-like hotspots. Furthermore, the catalysis by nanoceria overcomes the product inhibition generally observed for PTE and small molecule-based PTE mimetics.
Resumo:
Enzyme-and pH-responsive polyelectrolyte nanocapsules having diameters in the range of 200 +/- 20 nm were fabricated by means of Layer-by-Layer assembly of biopolymers, protamine, and heparin, and then loaded with anticancer drug doxorubicin. The incorporation of the FDA-approved peptide drug protamine as a wall component rendered the capsules responsive to enzyme stimuli. The stimuli-responsive drug release from these nanocapsules was evaluated, and further modulation of capsule permeability to avoid premature release was demonstrated by crosslinking the wall components. The interaction of the nanocapsules with cancer cells was studied using MCF-7 breast cancer cells. These capsules were readily internalized and disintegrated inside the cells, culminating in the release of the loaded doxorubicin and subsequent cell death as observed by confocal microscopy and MTT Assay. The bioavailability studies performed using BALB/c mice revealed that the encapsulated doxorubicin exhibited enhanced bioavailability compared to free doxorubicin. Our results indicate that this stimuli-responsive system fabricated from clinically used FDA-approved molecules and exhibiting minimal premature release has great potential for drug-delivery applications.