358 resultados para 3D characterization
Resumo:
Microsomal b-type hemoprotein designated, cytochrome b555 of C-Roseus seedlings was solubilized using detergents and purified by a combination of ion exchange chromatography and gel filtration to a specific content of 18.5 nmol per mg of protein. The purified cytochrome b555 was homogeneous and estimated to have an apparent molecular weight of 16500 on SDS-PAGE. The absorption spectrum of the reduced form has major peaks at 424, 525 and 555 nm. The α-band of the reduced form is asymmetric with a pronounced shoulder at 559 nm. The spectrum of the pyridine ferrohemochrome shows absorption peaks at 557, 524 and 418 nm indicating that the cytochrome has protoheme prosthetic group. The purified cytochrome is autoxidizable and does not combine with carbon monoxide, azide or cyanide. It is reducible by NADH in the presence of NADH-cytochrome b555 reductase partially purified from C-Roseus microsomes.
Resumo:
Fractionation of methanolic extracts of air dried aerial parts ofParthenium resulted in the isolation of a toxic constituent which was identified as parthenin, the major sesquiterpene lactone from the weed. The LD50 (minimal lethal dose required to cause 50% mortality) for parthenin in rats was 42 mg/kg body weight. When [3H]-parthenin was given orally or by intravenous administration, radioactivity appeared in the milk of lactating laboratory and dairy animals. Tissue distribution of radioactivity revealed that maximum label was detectable in kidneys.
Resumo:
Hydrazinium(1 +) hydrogensulphate, N2H5HS04, has been prepared for the first time by the reaction of solid ammonium hydrogensulphate with hydrazine monohydrate. The compound has been characterized by chemical analysis, infrared spectra, and X-ray powder diffraction. Thermal properties of N2H5HS04 have been investigated using differential thermal analysis and thermogravimetric analysis and compared with those of N2H6S04 and (N2H5)2S04.
Resumo:
Thermal characterization of surface-micromachined microheaters is carried out from their dynamic response to electrothermal excitations. An electrical equivalent circuit model is developed for the thermo-mechanical system. The mechanical parameters are extracted from the frequency response obtained using a laser Doppler vibrometer. The resonant frequencies of the microheaters are measured and compared with FEM simulations. The thermal time constants are obtained from the electrical equivalent model by fitting the model response to the measured frequency response. Microheaters with an active area of 140 µm × 140 µm have been realized on two different layers (poly-1 and poly-2) with two different air gaps (2 µm and 2.75 µm). The effective time constants, combining thermal and mechanical responses, are in the range of 0.13–0.22 ms for heaters on the poly-1 layer and 1.9 µs–0.15 ms for microheaters on the poly-2 layer. The thermal time constants of the microheaters are in the range of a few microseconds, thus making them suitable for sensor applications that need a faster thermal response.
Resumo:
Estimation of secondary structure in polypeptides is important for studying their structure, folding and dynamics. In NMR spectroscopy, such information is generally obtained after sequence specific resonance assignments are completed. We present here a new methodology for assignment of secondary structure type to spin systems in proteins directly from NMR spectra, without prior knowledge of resonance assignments. The methodology, named Combination of Shifts for Secondary Structure Identification in Proteins (CSSI-PRO), involves detection of specific linear combination of backbone H-1(alpha) and C-13' chemical shifts in a two-dimensional (2D) NMR experiment based on G-matrix Fourier transform (GFT) NMR spectroscopy. Such linear combinations of shifts facilitate editing of residues belonging to alpha-helical/beta-strand regions into distinct spectral regions nearly independent of the amino acid type, thereby allowing the estimation of overall secondary structure content of the protein. Comparison of the predicted secondary structure content with those estimated based on their respective 3D structures and/or the method of Chemical Shift Index for 237 proteins gives a correlation of more than 90% and an overall rmsd of 7.0%, which is comparable to other biophysical techniques used for structural characterization of proteins. Taken together, this methodology has a wide range of applications in NMR spectroscopy such as rapid protein structure determination, monitoring conformational changes in protein-folding/ligand-binding studies and automated resonance assignment.
Resumo:
A high-affinity riboflavin -binding protein was isolated and characterized for the first time from pregnant-rat sera by affinity chromatography on a lumiflavin-agarose column. The purified protein was homogeneous by the criteria of analytical polyacrylamide-gel disc electrophoresis, gel-filtration chromatography on Sephadex G-100 and sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. It had a molecular weight of 90000+/-5000 and interacted with [14C]riboflavin with a 1:1 molar ratio with a dissociation constant (Kd) of 0.42 micron.
Resumo:
In Neurospora crassa, the activity of δ-aminolevulinate dehydratase, the second and rate-limiting enzyme of the heme-biosynthetic pathway, is low in normal cells compared to the activity detected in plants, animals and bacteria. The activity is almost undetectable when Neurospora crassa is grown under iron-deficient conditions. The enzyme activity increases strikingly on addition of iron to iron-deficient cultures. This increase can be blocked by the addition of protoporphyrin, the penultimate product of the heme-biosynthetic pathway, to the cultures. The question whether iron directly acts at the genetic level or acts merely by removing protoporphyrin, converting the latter into heme prosthetic groups of hemoproteins, has been investigated by studying the effect of inhibition of heme synthesis on the induction of δ-aminolevulinate dehydratase. It has been found that treatments with levulinic acid or cyanide which inhibit the formation of the porphyrin moiety, induce δ-aminolevulinate dehydratase, whereas treatments which inhibit at a step after protoporphyrin formation (iron-deficiency and cobalt treatment) repress the enzyme. The endogenous levels of protoporphyrin are strictly controlled: a decrease below the optimum level causing induction and an increase above the optimum level leading to repression of δ-aminolevulinate dehydratase. Levulinic acid and cyanide can induce the enzyme in iron-deficient cultures in the absence of added iron, indicating that the metal iron acts only by converting protoporphyrin to heme fixed in hemoproteins in Neurospora crassa. Therefore it is suggested that protoporphyrin is the physiological regulator of δ-aminolevulinate dehydratase in Neurospora crassa.
Resumo:
Synthetically useful N-Fmoc amino-alkyl isothiocyanates have been described, starting from protected amino acids. These compounds have been synthesized in excellent yields by thiocarbonylation of the monoprotected 1,2-diamines with CS2/TEA/p-TsCl, isolated as stable solids, and completely characterized. The procedure has been extended to the synthesis of amino alkyl isothiocyanates from Boc- and Z-protected amino acids as well. The utility of these isothiocyanates for peptidomimetics synthesis has been demonstrated by employing them in the preparation of a series of dithioureidopeptide esters. Boc-Gly-OH and Boc-Phe-OH derived isothiocyanates 9a and 9c have been obtained as single crystals and their structures solved through X-ray diffraction. They belong to the orthorhombic crystal system, and have a single molecule in the asymmetric unit (Z′ = 1). 9a crystallizes in the centrosymmetric space group Pbca, while 9c crystallizes in the noncentrosymmetric space group P212121.
Resumo:
Reaction of 2-pyridinecarboxaldehyde [(Py)CHO] with Cu(NO3)2·2.5H2O in the presence of 4-aminopyridine and NaN3 in MeOH lead to an incomplete double-cubane [Cu4{PyCH(O)(OMe)}4(N3)4] (1) in 87% isolated yield, representing a rare type of metal cluster containing bridging hemiacetalate ligand [pyCH(O)(OMe)]−1 which was characterized by single crystal structure analysis and variable temperature magnetic behavior.
Resumo:
Microsomes (105,000xg sediment) prepared from induced cells of Image was found to hydroxylate progesterone to 11a-hydroxyprogesterone (11a-OHP) in high yields (85-90% in 30 min.) in the presence of NADPH and O2. The pH optimum for the hydroxylase was found to be 7.7. However, for the isolation of active microsomes grinding of the mycelium should be carried out at pH 8.3. Metyrapone, carbon monoxide, SKF-525A, p-CMB and N-methyl maleimide inhibited the hydroxylase activity indicating the involvement of cytochrome P-450 system. The inhibition of the hydroxylase by cytochrome Image and the presence of high levels of NADPH-cytochrome Image reductase in induced microsomes suggest that the reductase could be one of the components in the hydroxylase system.
Resumo:
The isolation and characterization of the initial intermediates formed during the irreversible acid denaturation of enzyme Ribonuclease A are described. The products obtained when RNase A is maintained in 0.5 M HCl at 30° for periods up to 20 h have been analyzed by ion-exchange chromatography on Amberlite XE-64. Four distinct components were found to elute earlier to RNase A; these have been designated RNase Aa2, Aa1c, Aa1b, and Aa1a in order of their elution. With the exception of RNase Aa2, the other components are nearly as active as RNase A. Polyacrylamide gel electrophoresis at near-neutral pH indicated that RNase Aa1a, Aa1b, and Aa1c are monodeamidated derivatives of RNase A; RNase Aa2 contains, in addition, a small amount of a dideamidated component. RNase Aa2, which has 75% enzymic activity as compared to RNase A, consists of dideamidated and higher deamidated derivatives of RNase A. Except for differences in the proteolytic susceptibilities at an elevated temperature or acidic pH, the monodeamidated derivatives were found to have very nearly the same enzymic activity and the compact folded structure as the native enzyme. Fingerprint analyses of the tryptic peptides of monodeamidated derivatives have shown that the deamidations are restricted to an amide cluster in the region 67–74 of the polypeptide chain. The initial acid-catalyzed deamidation occurs in and around the 65–72 disulfide loop giving rise to at least three distinct monodeamidated derivatives of RNase A without an appreciable change in the catalytic activity and conformation of the ribonuclease molecule. Significance of this specific deamidation occurring in highly acidic conditions, and the biological implications of the physiological deamidation reactions of proteins are discussed.
Resumo:
The antitumour protein from the α-endotoxin of Bacillus thuringiensis var. thuringiensis has been purified, crystallized and partially characterized. The same protein also shows the insecticidal activity. According to amino acid analysis it is an acidic protein with a molecular weight of approx. 13 000.
Resumo:
AA7475 alloy was deformed up to 25% elongation in INSTRON at 788K. The grain boundary sliding due to this superplastic deformation was measured by Scanning Electron Microscope. The microstructure and texture development due to this deformation at elevated temperature was analyzed from the Orientation Image Microstructures i.e. the Electron Back Scattered Diffraction Image. The Orientation Image Microstructures revealed that superplastic deformation was associated with recovery and recrystallization in-situ process.
Crystal growth and characterization of two-leg spin ladder compounds: Sr14Cu24O41 and Sr2Ca12Cu24O41
Resumo:
Single crystals of Sr14−xCaxCu24O41 (x=0 and 12) are grown by the travelling solvent floating zone technique using an image furnace. The grown crystals are characterized for their single crystallinity by the X-ray and Neutron Laue method. The magnetic susceptibility measurements in Sr14Cu24O41 show considerable anisotropy along the main crystallographic axes. Low-temperature specific heat measurement and DC susceptibility measurement in Ca-doped crystal showed antiferromagnetic ordering at 2.8 K at ambient pressure. High-pressure AC susceptibility measurement on Ca-doped crystal showed a sharp superconducting transition at 2 K under 40 kbars. Tc onset reached a maximum value of 9.9 K at 54 kbars. The bulk superconductivity of the sample is confirmed by the high-pressure AC calorimetry with Tc max=9.4 K and TN=5 K at 56 kbars.
Resumo:
The antitumour protein from the α-endotoxin of Bacillus thuringiensis var. thuringiensis has been purified, crystallized and partially characterized. The same protein also shows the insecticidal activity. According to amino acid analysis it is an acidic protein with a molecular weight of approx. 13 000.