2 resultados para 3D characterization

em CaltechTHESIS


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This dissertation is concerned with the development of a new discrete element method (DEM) based on Non-Uniform Rational Basis Splines (NURBS). With NURBS, the new DEM is able to capture sphericity and angularity, the two particle morphological measures used in characterizing real grain geometries. By taking advantage of the parametric nature of NURBS, the Lipschitzian dividing rectangle (DIRECT) global optimization procedure is employed as a solution procedure to the closest-point projection problem, which enables the contact treatment of non-convex particles. A contact dynamics (CD) approach to the NURBS-based discrete method is also formulated. By combining particle shape flexibility, properties of implicit time-integration, and non-penetrating constraints, we target applications in which the classical DEM either performs poorly or simply fails, i.e., in granular systems composed of rigid or highly stiff angular particles and subjected to quasistatic or dynamic flow conditions. The CD implementation is made simple by adopting a variational framework, which enables the resulting discrete problem to be readily solved using off-the-shelf mathematical programming solvers. The capabilities of the NURBS-based DEM are demonstrated through 2D numerical examples that highlight the effects of particle morphology on the macroscopic response of granular assemblies under quasistatic and dynamic flow conditions, and a 3D characterization of material response in the shear band of a real triaxial specimen.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Current technological advances in fabrication methods have provided pathways to creating architected structural meta-materials similar to those found in natural organisms that are structurally robust and lightweight, such as diatoms. Structural meta-materials are materials with mechanical properties that are determined by material properties at various length scales, which range from the material microstructure (nm) to the macro-scale architecture (μm – mm). It is now possible to exploit material size effect, which emerge at the nanometer length scale, as well as structural effects to tune the material properties and failure mechanisms of small-scale cellular solids, such as nanolattices. This work demonstrates the fabrication and mechanical properties of 3-dimensional hollow nanolattices in both tension and compression. Hollow gold nanolattices loaded in uniaxial compression demonstrate that strength and stiffness vary as a function of geometry and tube wall thickness. Structural effects were explored by increasing the unit cell angle from 30° to 60° while keeping all other parameters constant; material size effects were probed by varying the tube wall thickness, t, from 200nm to 635nm, at a constant relative density and grain size. In-situ uniaxial compression experiments reveal an order-of-magnitude increase in yield stress and modulus in nanolattices with greater lattice angles, and a 150% increase in the yield strength without a concomitant change in modulus in thicker-walled nanolattices for fixed lattice angles. These results imply that independent control of structural and material size effects enables tunability of mechanical properties of 3-dimensional architected meta-materials and highlight the importance of material, geometric, and microstructural effects in small-scale mechanics. This work also explores the flaw tolerance of 3D hollow-tube alumina kagome nanolattices with and without pre-fabricated notches, both in experiment and simulation. Experiments demonstrate that the hollow kagome nanolattices in uniaxial tension always fail at the same load when the ratio of notch length (a) to sample width (w) is no greater than 1/3, with no correlation between failure occurring at or away from the notch. For notches with (a/w) > 1/3, the samples fail at lower peak loads and this is attributed to the increased compliance as fewer unit cells span the un-notched region. Finite element simulations of the kagome tension samples show that the failure is governed by tensile loading for (a/w) < 1/3 but as (a/w) increases, bending begins to play a significant role in the failure. This work explores the flaw sensitivity of hollow alumina kagome nanolattices in tension, using experiments and simulations, and demonstrates that the discrete-continuum duality of architected structural meta-materials gives rise to their flaw insensitivity even when made entirely of intrinsically brittle materials.