93 resultados para 2,2,6,6, tetramethylpiperidine 1 oxyl 4 amino 4 carboxylic acid
Resumo:
Hyperconjugation and inductive effects, rather than homoaromaticity, are responsible for the stabilization of the title anion in the gas phase; interaction of the double bond with the Li+ gegenion in the endo geometry contributes additionally in solution.
Resumo:
Chlorine NQR in 2,6-dichloropyridine has been investigated in the temperature range 77 K to room temperature and a single resonance line has been observed throughout. Using this data, torsional frequencies of the molecule have been evaluated on the basis of both the Bayer theory and the modified Bayer theory incorporating Tatsuzaki correction.
Resumo:
The crystal structures of two peptides containing 1-aminocyclohexanecarboxylic acid (Acc6) are described. Boc-Aib-Acc6-NHMe · H2O adopts a β-turn conformation in the solid state, stabilized by an intramolecular 4 → 1 hydrogen bond between the Boc CO and methylamide NH groups. The backbone conformational angles (φAib = – 50.3°, ψAib = – 45.8°; φAcc6 = – 68.4°, ψAcc6 = – 15°) lie in between the values expected for ideal Type I or III β-turns. In Boc-Aib-Acc6-OMe, the Aib residue adopts a partially extended conformation (φAib = – 62.2°, ψAib = 143°) while the Acc6residue maintains a helical conformation (φAcc6 = 48°, ψAcc6= 42.6°). 1H n.m.r. studies in CDCl3 and (CD3)2SO suggest that Boc-Aib-Acc6-NHMe maintains the β-turn conformation in solution.
Resumo:
K2Pb[Cu(NO2)6] and [N(CH3)4]2MX4 (M = Mn, Co, Cu or Zn and X = Cl or Br) undergo phase transitions which involve incommensurate phases. The transitions have been investigated by examining the changes in the NO2 and CH3 vibration bands in the i.r. spectra. Splitting and broadening of some of the bands across the incommensurate transitions are discussed in the context of geometrical restrictions in the incommensurate phases. The phase transitions have also been characterized using differential scanning calorimetry.
Resumo:
Crystal structures of the title compounds, (I) and (II), have been determined by three-dimensional diffraction methods. Crystals of CsHIoN 4 (I) are monoclinic, space group P21/a with Z = 4, Mr= 162, a = 7.965 (1), b = 16.232 (2), c = 7.343 (1) A, fl = 113.54 (1) °, V = 890.7 A 3, D,n = 1.218, D x = 1.208 gcm -3, g(Cu Ka, 2 = 1.5418/~) = 6.47 em -1, F(000) = 344. The crystals of C9H12N4 (II) are orthorhombic, space group P21en, with Z = 4, Mr = 176, a = 7.983 (3), b = 8.075 (2), c = 14.652 (3) ./k, V = 944.43/~3, Dm= 1.219, D x = 1.237 g cm -3, #(Mo Ka, ). = 0.7107 ,/k) = 0.868 cm -1, F(000) = 376. Both structures were solved by direct methods and refined to R = 5.8% for (I) and 5.3 % for (II). The C-C double-bond distances are 1.407 (3) in (I) and 1.429 (6)/~ in (II), appreciably longer than normal. The steric and push-pull effects result in rotation about the C=C bond, the rotation angles being 20.2 (3) in (I) and 31.5 (6) o in (II).
Resumo:
Three distinct coordination complexes, viz., [Co(imi)(2)(tmb)(2)] (1) [where imi = imidazole], {[Ni(tmb)(2)(H2O)(3)]center dot 2H(2)O}(n) (2) and [Cu-2(mu-tmb)(4)(CH3OH)(2)] (3), have been synthesized hydrothermally by the reactions of metal acetates,2,4,6-trimethylbenzoic acid (Htmb) and with or without appropriate amine. The Ni analogue of 1 and the Co analogue of 2 have also been synthesized. X-ray single-crystal diffraction suggests that complex 1 represents discrete mononuclear species and complex 2 represents a 1D chain coordination polymer in which the Ni(H) ions are connected by the bridging water molecules. Complex 3 represents a neutral dinuclear complex. In 1, the central metal ions are associated by the carboxylate moiety and imidazole ligands, whereas the central metal atom is coordinated to the carboxylate moiety and the respective solvent molecules in 2 and 3. In 3, the four 2,4,6-trimethylbenzoate moieties act as a bridge connecting two copper (11) ions and the 0 atoms of methanol coord geometry, with the methanol molecule at the apical position. In all the three structures the central metal atom sits on a crystallographic inversion centre. In all the cases, the coordination entities are further organized via hydrogen bonding interactions to generate multifarious supramolecular networks. Complexes 1, 2 and 3 have also been characterized by spectroscopic (UV/Vis and IR) and thermal analysis (TGA). In addition, the complexes were found to exhibit antimicrobial activity. The magnetic susceptibility measurements, measured from 8 to 300 K, revealed antiferromagnetic interactions between the Co(II) ions in compound 1 and the Ni(II) ions in la, respectively.
Resumo:
Pressure dependence of the 35Cl Nuclear Quadrupole Resonances (N.Q.R.) in 2,5-, 2,6- and 3,5-dichlorophenols (DCP) has been studied up to a pressure of about 6·5 kbar at room temperature. While the pressure dependence of the two resonance lines in 2,6-DCP is essentially similar, the lower frequency line in 2,5-DCP is almost pressure independent and the higher frequency line shows a linear variation with pressure upto about 3·5 kbar but shows a negative pressure coefficient beyond this pressure. The two lines in 3,5-DCP have a non-linear pressure dependence with the curvature changing smoothly with pressure. The pressure coefficient for both lines becomes negative beyond a pressure of 5 kbar. The pressure dependence of the N.Q.R. frequencies is discussed in relation to intra- and inter-molecular contacts. Also, a thermodynamic analysis of the data is carried out to determine the constant volume temperature derivative of the N.Q.R. frequency.
Resumo:
2,6-Lutidine-N-oxide (LNO) complexes of rare-earth bromides of the composition $$MBr_3 .(LNO)_{4_{ - n} } .nH_2 O$$ wheren = l for M = La, Pr, Nd, Sm, Gd, Ho, Er; andn = 0 for M = Y have been prepared and characterised by analyses, conductance and infrared data. Infrared spectra of the complexes indicate that the coordination of ligand to the metal ion takes place through the oxygen of the ligand, and the water molecule in the complexes present is coordinated to the metal. A coordination number of seven has been suggested to all the rare-earth metal ions.
Resumo:
Reaction of five N,N′-bis(aryl)pyridine-2,6-dicarboxamides (H2L-R, where H2 denotes the two acidic protons and R (R = OCH3, CH3, H, Cl and NO2) the para substituent in the aryl fragment) with [Ru(trpy)Cl3](trpy = 2,2′,2″-terpyridine) in refluxing ethanol in the presence of a base (NEt3) affords a group of complexes of the type [RuII(trpy)(L-R)], each of which contains an amide ligand coordinated to the metal center as a dianionic tridentate N,N,N-donor along with a terpyridine ligand. Structure of the [RuII(trpy)(L-Cl)] complex has been determined by X-ray crystallography. All the Ru(II) complexes are diamagnetic, and show characteristic 1H NMR signals and intense MLCT transitions in the visible region. Cyclic voltammetry on the [RuII(trpy)(L-R)] complexes shows a Ru(II)–Ru(III) oxidation within 0.16–0.33 V versus SCE. An oxidation of the coordinated amide ligand is also observed within 0.94–1.33 V versus SCE and a reduction of coordinated terpyridine ligand within −1.10 to −1.15 V versus SCE. Constant potential coulometric oxidation of the [RuII(trpy)(L-R)] complexes produces the corresponding [RuIII(trpy)(L-R)]+ complexes, which have been isolated as the perchlorate salts. Structure of the [RuIII(trpy)(L-CH3)]ClO4 complex has been determined by X-ray crystallography. All the Ru(III) complexes are one-electron paramagnetic, and show anisotropic ESR spectra at 77 K and intense LMCT transitions in the visible region. A weak ligand-field band has also been shown by all the [RuIII(trpy)(L-R)]ClO4 complexes near 1600 nm.
Resumo:
Mononuclear, binuclear and trinuclear silver(l) complexes were obtained unexpectedly while probing the reactivity of diphosphazane ligands of the type X2PN(Pr-i)PXY towards the ruthenium-based precursor Ru(bipy)(2)Cl-2 center dot 2H(2)O, in the presence of a silver salt as a chloride scavenger. Subsequently, the reactions of AgX [X = Cl, NO3 or CF3SO3] with Ph2PN(R)PPh(Y) [R = H, Y = Ph; R = Pr-i, Y = Ph or OC6H3Me2-2,6] in a 1: 1 or 1:2 molar ratio have been investigated. Mononuclear or binuclear Ag(I) complexes containing either chelating or bridging diphosphazane ligands are obtained. Trinuclear silver(l) complexes are accessible by the treatment of diphosphazane ligands, Ph2PN(R)PPh2 [R = H, Pr-i] with AgCl using piperidine as the solvent. In the presence of a suitable chloride donor species, the mononuclear and binuclear complexes of Ph2PN(Pr-i)PPh2 are transformed slowly to the trinuclear complex [Ag-3(mu-Cl)(2){Ph2PN(Pr-i)PPh2}(3)]X, over a period 20 h. The structures of representative complexes have been confirmed by X-ray crystallography and the salient structural features are discussed
Resumo:
The structures of [Nd-2(Acc(6))(H2O)(6)](ClO4)(6) .(H2O)(6) (1) [Er-2(Acc(6))(4)(H2O)(8)](ClO4)(6) .(H2O)(11) (2) and [Ca-5(Acc(6))(12)(H2O)(6)](ClO4)(10).(H2O)(4) (3) (Acc(6) = 1-aminocyclohexane-1-carboxylic acid) have been determined by X-ray crystallography. The lanthanide complexes 1 and 2 are dimeric in which two lanthanide cations are bridged by four carboxylato groups of Acc(6) molecules. In addition, the neodymium complex (1) features the unidentate coordination of the carboxyl group of an Acc(6) molecule in place of a water molecule in the erbium complex (2). The coordination number in both 1 and 2 is eight. The calcium Acc(6) complex (3) is polymeric; three different calcium environments are observed in the asymmetric unit. Two calcium ions are hexa-coordinated and one is hepta-coordinated. Considerable differences are observed between the solid state structures of Ln(III) and Ca-II complexes of Acc(6
Resumo:
The lambda(3)-cyclotriphosphazanes, [EtNP(OR)](3) [R = 2,6-Me2C6H3 (1), 4-BrC6H4 (2), or CH2CF3(3)], on treatment with tetrachloro-1,2-benzoquinone (TCB) give the lambda(5)-cyclodiphosphazanes, [EtNP(O2C6Cl4)(OR)][EtNP(O2C6Cl4){N(Et)P(OR)(2)}] (5-7) by an unusual ring contraction-rearrangement. The reaction of the mixed substituent lambda(3)-cyclotriphosphazane, [(EtN)(3)P-3(OR)(2)(OR')] [R = 2,6-Me2C6H3, R' = 4-BrC6H4] (4), with TCB gives the lambda(5)-cyclodiphosphazane, [EtNP(O2C6Cl4)(OR')][EtNP(O2C6Cl4){N(Et)P(OR)(2)}] (8), in which 4-bromophenoxide resides on one of the ring phosphorus atoms. The lambda(3)-bicyclic tetraphosphapentazane, (EtN)(5)P-4(OPh)(2), on treatment with TCB undergoes a double ring contraction-rearrangement to give the lambda(5)-cyclodiphosphazane, (EtN)[(EtN)(2)P-2(O2C6Cl4)(2)(OPh)](2) (9). Variable-temperature and high-field P-31 NMR studies indicate the presence of more than one isomer in solution for the rearranged products 5-9. The solid state structure of 8 reveals a trans arrangement of the substituents with respect to the P2N2 ring in contrast to the gauche arrangement observed for 5.
Resumo:
Equilibrium concentrations of various condensed and gaseous phases have been thermodynamically calculated, using the free energy minimization criterion, for the metalorganic chemical vapour deposition (MOCVD) of copper films using bis(2,2,6,6-tetramethyl-3,5-heptadionato)copper(II) as the precursor material. From among the many chemical species that may possibly result from the CVD process, only those expected on the basis of mass spectrometric analysis and chemical reasoning to be present at equilibrium, under different CVD conditions, are used in the thermodynamic calculations. The study predicts the deposition of pure, carbon-free copper in the inert atmosphere of argon as well as in the reactive hydrogen atmosphere, over a wide range of substrate temperatures and total reactor pressures. Thin films of copper, grown on SiO2/Si(100) substrates from this metalorganic precursor by low pressure CVD have been characterized by XRD and AES. The experimentally determined composition of CVD-grown copper films is in reasonable agreement with that predicted by thermodynamic analysis.
Resumo:
FT-IR (4000-400 cm(-1)) and FT-Raman (4000-200 cm(-1)) spectral measurements on solid 2,6-dichlorobenzonitrile (2,6-DCBN) have been done. The molecular geometry, harmonic vibrational frequencies and bonding features in the ground state have been calculated by density functional theory at the B3LYP/6-311++G (d,p) level. A comparison between the calculated and the experimental results covering the molecular structure has been made. The assignments of the fundamental vibrational modes have been done on the basis of the potential energy distribution (PED). To investigate the influence of intermolecular hydrogen bonding on the geometry, the charge distribution and the vibrational spectrum of 2,6-DCBN; calculations have been done for the monomer as well as the tetramer. The intermolecular interaction energies corrected for basis set superposition error (BSSE) have been calculated using counterpoise method. Based on these results, the correlations between the vibrational modes and the structure of the tetramer have been discussed. Molecular electrostatic potential (MEP) contour map has been plotted in order to predict how different geometries could interact. The Natural Bond Orbital (NBO) analysis has been done for the chemical interpretation of hyperconjugative interactions and electron density transfer between occupied (bonding or lone pair) orbitals to unoccupied (antibonding or Rydberg) orbitals. UV spectrum was measured in methanol solution. The energies and oscillator strengths were calculated by Time Dependent Density Functional Theory (TD-DFT) and matched to the experimental findings. TD-DFT method has also been used for theoretically studying the hydrogen bonding dynamics by monitoring the spectral shifts of some characteristic vibrational modes involved in the formation of hydrogen bonds in the ground and the first excited state. The C-13 nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by the Gauge independent atomic orbital (GIAO) method and compared with experimental results. Standard thermodynamic functions have been obtained and changes in thermodynamic properties on going from monomer to tetramer have been presented. (C) 2013 Elsevier B.V. All rights reserved.