566 resultados para phase retrieval
Resumo:
Thermodynamic properties of Dysprosium rhodite (DyRhO3) are measured in the temperature range from 900 to 1,300 K using a solid-state electrochemical cell incorporating yttria-stabilized zirconia as the electrolyte. The standard Gibbs free energy of formation of DyRhO3 with O-type perovskite structure from its components binary oxides, Dysprosia with C-rare earth structure and beta-Rh2O3 with orthorhombic structure, can be represented by the equation: Delta G(f(OX))(O) (+/- 182)/J mol(-1) = -52710+3.821(T/K). By using the thermodynamic data for DyRhO3 from experiment and auxiliary data for other phases from the literature, the phase relations in the system Dy-Rh-O are computed. Thermodynamic data for intermetallic phases in the binary system Dy-Rh, required for constructing the chemical potential diagrams, are evaluated using calorimetric data available in the literature for three intermetallics and Miedema's model, consistent with the phase diagram. The results are presented in the form of Gibbs triangle, oxygen potential-composition diagram, and three-dimensional chemical potential diagram at 1,273 K. Temperature-composition diagrams at constant oxygen partial pressures are also developed. The decomposition temperature of DyRhO3 is 1,732 (+/- 2.5) K in pure oxygen and 1,624 (+/- 2.5) K and in air at standard pressure.
Resumo:
Morphotropic phase boundary (MPB) systems are characterized by the coexistence of two ferroelectric phases and are associated with anomalous piezoelectric properties. In general, such coexistence is brought about by composition induced ferroelectric-ferroelectric instability. Here we demonstrate that a pure ferroelectric compound Na1/2Bi1/2TiO3 (NBT) exhibits the coexistence of two ferroelectric phases, rhombohedral (R3c) and monoclinic (Cc), in its equilibrium state at room temperature. This was unravelled by adopting a unique strategy of comparative structural analysis of electrically poled and thermally annealed specimens using high resolution synchrotron x-ray powder diffraction data. The relative fraction of the coexisting phases was found to be highly sensitive to thermal, mechanical, and electrical stimuli. The coexistence of ferroelectric phases in the ground state of the pure compound will have significant bearing on the way MPB is induced in NBT-based lead-free piezoceramics. DOI: 10.1103/PhysRevB.87.060102
Resumo:
In the present study, electrodeposition technique was used to produce Ag-Ni nanowires. Ag-Ni system shows extremely high bulk immiscibility. Nanowire morphology was achieved by employing an anodic alumina membrane having pores of similar to 200 nm diameter. Microstructure of as-deposited wire was composed of nano-sized solid solution structured Ag-Ni nanoparticles embedded in a matrix of pure Ag phase. It is proposed that the two phase microstructure resulted from an initial formation of solid solution structured nanoparticles in the alumina template pore followed by nucleation of pure Ag phase over the particles which eventually grew to form the matrix phase. (C) 2013 Elsevier B. V. All rights reserved.
Resumo:
The notion of the 1-D analytic signal is well understood and has found many applications. At the heart of the analytic signal concept is the Hilbert transform. The problem in extending the concept of analytic signal to higher dimensions is that there is no unique multidimensional definition of the Hilbert transform. Also, the notion of analyticity is not so well under stood in higher dimensions. Of the several 2-D extensions of the Hilbert transform, the spiral-phase quadrature transform or the Riesz transform seems to be the natural extension and has attracted a lot of attention mainly due to its isotropic properties. From the Riesz transform, Larkin et al. constructed a vortex operator, which approximates the quadratures based on asymptotic stationary-phase analysis. In this paper, we show an alternative proof for the quadrature approximation property by invoking the quasi-eigenfunction property of linear, shift-invariant systems. We show that the vortex operator comes up as a natural consequence of applying this property. We also characterize the quadrature approximation error in terms of its energy as well as the peak spatial-domain error. Such results are available for 1-D signals, but their counter part for 2-D signals have not been provided. We also provide simulation results to supplement the analytical calculations.
Resumo:
This paper presents an analysis and comparison between two circuit topologies of the 3-phase, 3-level unity power factor (Vienna) rectifier on the basis of packaging issues and semiconductor power losses. The analysis indicates the suitability of one particular circuit variant due to restrictions on switching frequency at higher power levels. A comparison is also done between hysteresis and carrier based PWM strategies for current control of the rectifier, along with experimental evaluation of the control strategies on a hardware prototype of the rectifier. The comparison indicates that the carrier based modulation strategy is better suited for use with higher order filters that are utilized in high power applications.
Resumo:
Thermodynamic properties of GdRhO3 are investigated in the temperature range from 900 to 1300 K by employing a solid-state electrochemical cell, incorporating calcia-stabilized zirconia as the electrolyte. The standard Gibbs free energy of formation of GdRhO3 from component binary oxide Gd2O3 with C-rare earth structure and Rh2O3 with orthorhombic structure can be expressed as; Delta G(f(ox))(o)(+/- 60)/J mol(-1) = -56603 + 3.78(T/K) Based on the thermodynamic information on GdRhO3 from experiment and auxiliary data for binary oxides from the literature and estimated properties of Gd-Rh alloys, phase relations are computed for the system Gd-Rh-O at 1273 K. Gibbs free energies for intermetallic phases in the binary Gd-Rh are evaluated using calorimetric data available in the literature for two compositions and Miedema's model, consistent with the binary phase diagram. Isothermal section of the ternary phase diagram, oxygen potential-composition diagram and a 3-D chemical potential diagram for the system Gd-Rh-O at 1273 K are developed. Phase relations in the ternary Gd-Rh-O are also computed as a function of temperature at constant oxygen partial pressures. The ternary oxide, GdRhO3 decomposes to Gd2O3 with B-rare earth structure, metallic Rh and O-2 at 1759(+/- 2) K in pure O-2 and 1649(+/- 2) K in air at a total pressure P-0 -0.1 MPa. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
The paper reports the synthesis of Nb/Si multilayers (48/27 nm) deposited on Si single crystal substrate by sequential laser ablation of elemental Nb and Si. Significant amount of Nb is found in the amorphous Si layer (similar to 25-35 at.% Nb). The Nb layer is found to be polycrystalline. The phase evolution of the multilayer has been studied by annealing at 600 degrees C for various times and carrying out cross sectional electron microscopic studies. We report the formation of amorphous silicide layer at the Nb/Si interface followed by the formation of the NbSi2 phase in the Si layer. Further annealing leads to the nucleation of hexagonal Nb5Si3 grains in amorphous silicide layers at Nb/NbSi2 interfaces. These results are different from those reported for sputter deposited multilayer. (C) 2013 Elsevier B. V. All rights reserved.
Resumo:
A systematic x-ray and neutron powder diffraction study of the giant tetragonality multiferroic (1-x) BiFeO3-(x) PbTiO3 have revealed that the compositions close to the morphotropic phase boundary present two different structural phase transition scenarios on cooling from the cubic phase: (i) cubic -> tetragonal (T-2) + tetragonal (T-1) -> tetragonal (T-1) and (ii) cubic -> tetragonal (T-2) + tetragonal (T-1) + rhombohedral (R3c) -> tetragonal (T-1) + rhombohedral (R3c). The comparatively larger tetragonality (c/a - 1) of the T-1 phase as compared to the coexisting isostructural T-2 phase is shown to be a result of significantly greater degree of overlap of the Pb/Bi-6s and Ti/Fe-3d with the O-2p orbitals as compared to that in the T-2 phase. The formation/suppression of the minor metastable rhombohedral phase seems to be governed by subtle play of local kinetic factors. In the scenario when the minor rhombohedral (R) phase is formed along with the tetragonal phases it is able to accommodate the large transformation stress in the system due to formation of the tetragonal phases, and prevent the solid from disintegration into powder after sintering. When the metastable rhombohedral phase is not formed, the large transformation strain ruptures the grain boundaries leading to fragmentation of the dense solid to powder. (C) 2013 American Institute of Physics. http://dx.doi.org/10.1063/1.4792215]
Resumo:
We report ultrafast quasiparticle (QP) dynamics and coherent acoustic phonons in undoped CaFe2As2 iron pnictide single crystals exhibiting spin-density wave (SDW) and concurrent structural phase transition at temperature T-SDW similar to 165K using femtosecond time-resolved pump-probe spectroscopy. The contributions in transient differential reflectivity arising from exponentially decaying QP relaxation and oscillatory coherent acoustic phonon mode show large variations in the vicinity of T-SDW. From the temperature-dependence of the QP recombination dynamics in the SDW phase, we evaluate a BCS-like temperature dependent charge gap with its zero-temperature value of similar to(1.6 perpendicular to 0.2)k(B)T(SDW), whereas, much above T-SDW, an electron-phonon coupling constant of similar to 0.13 has been estimated from the linear temperature-dependence of the QP relaxation time. The long-wavelength coherent acoustic phonons with typical time-period of similar to 100 ps have been analyzed in the light of propagating strain pulse model providing important results for the optical constants, sounds velocity and the elastic modulus of the crystal in the whole temperature range of 3 to 300 K.
Resumo:
Lead Telluride (PbTe) with bismuth secondary phase embedded in the bulk has been prepared by matrix encapsulation technique. X-Ray Diffraction results indicated crystalline PbTe, while Rietveld analysis showed that Bi did not substitute at either Pb or Te site, which was further confirmed by Raman and X-Ray Photoelectron Spectroscopy. Scanning Electron Microscopy showed the expected presence of a secondary phase, while Energy Dispersive Spectroscopy results showed a slight deficiency of tellurium in the PbTe matrix, which might have occurred during synthesis due to higher vapor pressure of Te. Transmission Electron Microscopy results did not show any nanometer sized Bi phase. Seebeck coefficient (S) and electrical conductivity (sigma) were measured from room temperature to 725 K. A decrease in S and sigma with increasing Bi content showed an increased scattering of electrons from PbTe-Bi interfaces, along with a possible electron acceptor role of Bi secondary phase. An overall decrease in the power factor was thus observed. Thermal conductivity, measured from 400K to 725K, was smaller at starting temperature with increasing Bi concentration, and almost comparable to that of PbTe at higher temperatures, indicating a more important role of electrons as compared to phonons at PbTe-Bi interfaces. Still, a reasonable zT of 0.8 at 725K was achieved for undoped PbTe, but no improvement was found for bismuth added samples with micrometer inclusions. (C) 2013 American Institute of Physics. http://dx.doi.org/10.1063/1.4796148]