530 resultados para DSSC Ru(II) tetrazoli fotoassorbitori
Resumo:
In view of the recent measurement of the reactor mixing angle theta(13) and updated limit on BRd(mu -> e gamma) by the MEG experiment, we reexamine the charged lepton flavor violations in a framework of the supersymmetric type II seesaw mechanism. The supersymmetric type II seesaw predicts a strong correlation between BR(mu -> e gamma) and BR(tau -> mu gamma) mainly in terms of the neutrino mixing angles. We show that such a correlation can be determined accurately after the measurement of theta(13). We compute different factors that can affect this correlation and show that the minimal supergravity-like scenarios, in which slepton masses are taken to be universal at the high scale, predict 3.5 <= BR(tau -> mu gamma)/= BR(mu -> e gamma) <= 30 for normal hierarchical neutrino masses. Any experimental indication of deviation from this prediction would rule out the minimal models of the supersymmetric type II seesaw. We show that the current MEG limit puts severe constraints on the light sparticle spectrum in the minimal supergravity model if the seesaw scale lies within 10(13)-10(15) GeV. It is shown that these constraints can be relaxed and a relatively light sparticle spectrum can be obtained in a class of models in which the soft mass of a triplet scalar is taken to be nonuniversal at the high scale.
Resumo:
Porous titanium oxide-carbon hybrid nanostructure (TiO2-C) with a specific surface area of 350 m(2)/g and an average pore-radius of 21 center dot 8 is synthesized via supramolecular self-assembly with an in situ crystallization process. Subsequently, TiO2-C supported Pt-Ru electro-catalyst (Pt-Ru/TiO2-C) is obtained and investigated as an anode catalyst for direct methanol fuel cells (DMFCs). X-ray diffraction, Raman spectroscopy and transmission electron microscopy (TEM) have been employed to evaluate the crystalline nature and the structural properties of TiO2-C. TEM images reveal uniform distribution of Pt-Ru nanoparticles (d (Pt -aEuro parts per thousand Ru) = 1 center dot 5-3 center dot 5 nm) on TiO2-C. Methanol oxidation and accelerated durability studies on Pt-Ru/TiO2-C exhibit enhanced catalytic activity and durability compared to carbon-supported Pt-Ru. DMFC employing Pt-Ru/TiO2-C as an anode catalyst delivers a peak-power density of 91 mW/cm(2) at 65 A degrees C as compared to the peak-power density of 60 mW/cm(2) obtained for the DMFC with carbon-supported Pt-Ru anode catalyst operating under similar conditions.
Resumo:
Most charge generation studies on organic solar cells focus on the conventional mode of photocurrent generation derived from light absorption in the electron donor component (so called channel I). In contrast, relatively little attention has been paid to the alternate generation pathway: light absorption in the electron acceptor followed by photo-induced hole transfer (channel II). By using the narrow optical gap polymer poly(3,6-dithieno3,2-b] thiophen-2-yl)-2,5-bis(2-octyldodecyl)-pyrrolo- 3,4-c]pyrrole-1,4-dione-5',5 `'-diyl-alt-4,8-bis(dodecyloxy) benzo1,2-b:4,5-b'] dithiophene-2,6-diyl with two complimentary fullerene absorbers; phenyl-C-61-butyric acid methyl ester, and phenyl-C-71-butyric acid methyl ester (70-PCBM), we have been able to quantify the photocurrent generated each of the mechanisms and find a significant fraction (>30%), which is derived in particular from 70-PCBM light absorption.
Resumo:
Pathogenic mycobacteria employ several immune evasion strategies such as inhibition of class II transactivator (CIITA) and MHC-II expression, to survive and persist in host macrophages. However, precise roles for specific signaling components executing down-regulation of CIITA/MHC-II have not been adequately addressed. Here, we demonstrate that Mycobacterium bovis bacillus Calmette-Guerin (BCG)-mediated TLR2 signaling-induced iNOS/NO expression is obligatory for the suppression of IFN-gamma-induced CIITA/MHC-II functions. Significantly, NOTCH/PKC/MAPK-triggered signaling cross-talk was found critical for iNOS/NO production. NO responsive recruitment of a bifunctional transcription factor, KLF4, to the promoter of CIITA during M. bovis BCG infection of macrophages was essential to orchestrate the epigenetic modifications mediated by histone methyltransferase EZH2 or miR-150 and thus calibrate CIITA/MHC-II expression. NO-dependent KLF4 regulated the processing and presentation of ovalbumin by infected macrophages to reactive T cells. Altogether, our study delineates a novel role for iNOS/NO/KLF4 in dictating the mycobacterial capacity to inhibit CIITA/MHC-II-mediated antigen presentation by infected macrophages and thereby elude immune surveillance.
Resumo:
Introduction: For over half a century now, the dopamine hypothesis has provided the most widely accepted heuristic model linking pathophysiology and treatment in schizophrenia. Despite dopaminergic drugs being available for six decades, this system continues to represent a key target in schizophrenia drug discovery. The present article reviews the scientific rationale for dopaminergic medications historically and the shift in our thinking since, which is clearly reflected in the investigational drugs detailed. Areas covered: We searched for investigational drugs using the key words `dopamine,' `schizophrenia,' and `Phase II' in American and European clinical trial registers (clinicaltrials. gov; clinicaltrialsregister.eu), published articles using National Library of Medicine's PubMed database, and supplemented results with a manual search of cross-references and conference abstracts. We provide a brief description of drugs targeting dopamine synthesis, release or metabolism, and receptors (agonists/partial agonists/antagonists). Expert opinion: There are prominent shifts in how we presently conceptualize schizophrenia and its treatment. Current efforts are not as much focused on developing better antipsychotics but, instead, on treatments that can improve other symptom domains, in particular cognitive and negative. This new era in the pharmacotherapy of schizophrenia moves us away from the older `magic bullet' approach toward a strategy fostering polypharmacy and a more individualized approach shaped by the individual's specific symptom profile.
Resumo:
Four ``V'' shaped 1,8-naphthalimides (1-4) have been synthesized and their fluorescence quantum-yields correlated to their molecular flexibility. The correlation was used for detection of Hg(II) via a chemodosimetric approach. 4 was found to be an AIE active molecule with the formation of fluorescent nanoaggregates.
Resumo:
The sequence and structure of snake gourd seed lectin (SGSL), a nontoxic homologue of type II ribosome-inactivating proteins (RIPs), have been determined by mass spectrometry and X-ray crystallography, respectively. As in type II RIPs, the molecule consists of a lectin chain made up of two beta-trefoil domains. The catalytic chain, which is connected through a disulfide bridge to the lectin chain in type II RIPs, is cleaved into two in SGSL. However, the integrity of the three-dimensional structure of the catalytic component of the molecule is preserved. This is the first time that a three-chain RIP or RIP homologue has been observed. A thorough examination of the sequence and structure of the protein and of its interactions with the bound methyl-alpha-galactose indicate that the nontoxicity of SGSL results from a combination of changes in the catalytic and the carbohydrate-binding sites. Detailed analyses of the sequences of type II RIPs of known structure and their homologues with unknown structure provide valuable insights into the evolution of this class of proteins. They also indicate some variability in carbohydrate-binding sites, which appears to contribute to the different levels of toxicity exhibited by lectins from various sources.
Resumo:
A new 3D cadmium(II) coordination polymer, Cd(C2O4)(0.5)Cl(H2O)](n) (1) has been synthesized from a mixture of CdCl2. H2O and (NH4)(2)C2O4 in a slightly acidic pH. Its molecular structure was determined by single crystal X-ray diffraction which reveals that the new polymeric structure consists of simultaneous mu(4)-oxalato, mu-aquo, and mu-chlorido bridges between the metal centers, embedded in distorted pentagonal bipyramidal geometries. On thermal analysis compound exhibits high thermal stability up to 330 degrees C. Compound 1 also exhibits strong fluorescent emission. (c) 2013 Elsevier B.V. All rights reserved.
Resumo:
We investigate nucleosynthesis inside the gamma-ray burst (GRB) accretion disks formed by the Type II collapsars. In these collapsars, the core collapse of massive stars first leads to the formation of a proto-neutron star. After that, an outward moving shock triggers a successful supernova. However, the supernova ejecta lacks momentum and within a few seconds the newly formed neutron star gets transformed to a stellar mass black hole via massive fallback. The hydrodynamics of such an accretion disk formed from the fallback material of the supernova ejecta has been studied extensively in the past. We use these well-established hydrodynamic models for our accretion disk in order to understand nucleosynthesis, which is mainly advection dominated in the outer regions. Neutrino cooling becomes important in the inner disk where the temperature and density are higher. The higher the accretion rate (M) over dot is, the higher the density and temperature are in the disks. We deal with accretion disks with relatively low accretion rates: 0.001 M-circle dot s(-1) less than or similar to (M) over dot less than or similar to 0.01 M-circle dot s(-1) and hence these disks are predominantly advection dominated. We use He-rich and Si-rich abundances as the initial condition of nucleosynthesis at the outer disk, and being equipped with the disk hydrodynamics and the nuclear network code, we study the abundance evolution as matter inflows and falls into the central object. We investigate the variation in the nucleosynthesis products in the disk with the change in the initial abundance at the outer disk and also with the change in the mass accretion rate. We report the synthesis of several unusual nuclei like P-31, K-39, Sc-43, Cl-35 and various isotopes of titanium, vanadium, chromium, manganese and copper. We also confirm that isotopes of iron, cobalt, nickel, argon, calcium, sulphur and silicon get synthesized in the disk, as shown by previous authors. Much of these heavy elements thus synthesized are ejected from the disk via outflows and hence they should leave their signature in observed data.
Resumo:
Two heterometallic coordination polymers (CPs) have been prepared using (NiL)-L-II](2)Co-II (where H2L = N,N'-bis(salicylidene)-1,3-propanediamine) as nodes and dicyanamido spacers by varying the solvent for synthesis. Structural characterizations revealed that methanol assisted the formation of a two-dimensional (4,4) connected rhombic grid network of (NiL)(2)Co(NCNCN)2](infinity) (1a) whereas relatively less polar acetonitrile afforded a different superstructure {(NiL)(2)Co(NCNCN)(2)]center dot CH3CN}(infinity) (1b) with a two-dimensional (4,4) connected square grid network. The presence of acetonitrile molecules in the structure of 1b seems to change the spatial orientation of the terminal metalloligands NiL] from pseudo-eclipsed in 1a to staggered-like in 1b around the central Co(II). These structural changes in the nodes together with the conformationally flexible dicyanamido spacers, which are cis coordinated to the Co(II) in both trinuclear units, led to the differences in the final 2D network. Variable-temperature magnetic susceptibility measurements revealed that this supramolecular isomerism led to a drastic transition from spin-frustrated antiferromagnetism for 1a to a dominant ferromagnetic behaviour for 1b. The geometrical differences in Ni2Co coordination clusters (CCs) which are scalene triangular in 1a but nearly linear in 1b, are held responsible for the changes of the magnetic properties. The DFT calculations of exchange interactions between metal centres provide a clear evidence of the role played by the fundamental geometrical factors on the nature and magnitude of the magnetic coupling in these pseudo-polymorphic CPs.
Resumo:
Water soluble dinickel(II) complexes Ni-2(L)(2)(1-2)](NO3)(4) (1-2), where L1-2 are triazole based dinucleating ligands, were synthesized and characterized. The DNA binding, protein binding, DNA hydrolysis and anticancer properties were investigated. The interactions of complexes 1 and 2 with calf thymus DNA were studied by spectroscopic techniques, including absorption and fluorescence spectroscopy. The DNA binding constant values of the complexes 1 and 2 were found to be 2.36 x 10(5) and 4.87 x 10(5) M-1 and the binding affinities are in the following order: 2 > 1. Both the dinickel(II) complexes 1 and 2, promoted the hydrolytic cleavage of plasmid pBR322 DNA under both anaerobic and aerobic conditions. Kinetic data for DNA hydrolysis promoted by 1 and 2 under physiological conditions give the observed rate constants (k(obs)) of 5.05 +/- 0.2 and 5.65 +/- 0.1 h(-1), respectively, which shows 10(8)-fold rate acceleration over the uncatalyzed reaction of ds-DNA. Meanwhile, the interactions of the complex with BSA have also been studied by spectroscopy. Both the complexes 1 and 2 display strong binding propensity and the binding constant (K-b), number of binding sites (n) were obtained are 0.71 x 10(6) 1.47] and 5.62 x 10(6) 1.98] M-1, respectively. The complexes 1 and 2 also promoted the apoptosis against human carcinoma (HeLa, and BeWo) cancer cells. Cytotoxicity of the complexes was further confirmed by lactate dehydrogenase enzyme level in cancer cell lysate and content media. (c) 2013 Elsevier Ltd. All rights reserved.
Resumo:
A new naphthalene carbohydrazone based dizinc(II) complex has been synthesized and investigated to act as a highly selective fluorescence and visual sensor for a pyrophosphate ion with a quite low detection limit of 155 ppb; this has also been used to detect the pyrophosphate ion released from polymerase-chain-reaction.
Resumo:
Copper(II) complexes Cu(Fc-aa)(cur)] (1-3) of curcumin (Hcur) and N-ferrocenylmethyl-L-amino acids (Fc-aa), viz., ferrocenylmethyl-L-tyrosine (Fc-TyrH), ferrocenylmethyl-L-tryptophan (Fc-TrpH) and ferrocenylmethyl-L-methionine (Fc-MetH), were prepared and characterized. The DNA photocleavage activity, photocytotoxicity and cellular localization in HeLa and MCF-7 cancer cells of these complexes were studied. Acetylacetonate (acac) complexes Cu(Fc-aa)(acac)] (4-6) were prepared and used as controls. The chemical nuclease inactive complexes showed efficient pUC19 DNA cleavage activity in visible light. Complexes 1-3 showed high photocytotoxicity with low dark toxicity thus giving remarkable photodynamic effect. FACScan analysis showed apoptosis of the cancer cells. Fluorescence microscopic studies revealed primarily cytosolic localization of the complexes. (C) 2013 Elsevier Masson SAS. All rights reserved.
Resumo:
Let X be an arbitrary complex surface and D subset of X a domain that has a noncompact group of holomorphic automorphisms. A characterization of those domains D that admit a smooth real analytic, finite type, boundary orbit accumulation point and whose closures are contained in a complete hyperbolic domain D' subset of X is obtained.
Resumo:
Two Schiff base metal complexes Cu-SPETNNO3 (1) and Ni-SPETNNO3 (2) SPETN=2,2-propane,1,3-diylbis(nitrilomethyldyne)pyridyl,phenolate] ] with hydrogen bonding groups have been synthesized and characterized by single-crystal X-ray diffraction. In both of the compounds nitrates occupy a crystallographic general position. In 1 the lattice nitrates are on the 2(1) screw axis while in 2 they are at the crystallographic inversion center. C-HOnitrate synthons (formed by the nitrate anions and peripheral hydrogen bonding groups of the metal complexes) are non-covalent building blocks in molecular-assembly and packing of the cationic Schiff base metal complexes (M=Ni2+, Cu2+), resulting in 2-D hydrogen bonded networks. The CuCu non-bonding contact in 1 is 3.268 angstrom while the Ni-Ni bonding distance in 2 is 3.437 angstrom.