535 resultados para Crystal Composition


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Catch the twist: The cis Piv-Pro conformer (Piv=pivaloyl) of peptides is no longer inaccessible. Any cis X-Pro tertiary-amide-bond conformer can be stabilized in crystals of peptides by accommodating the unavoidable distortion of the dihedral angle of the peptide bond to the carbonyl group of the Pro residue (see picture), in this case through ni−1→πi* interactions. Steric clashes were not observed in the cis Piv-Pro rotamers studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lipopolysaccharide (LPS) is an endotoxin, a potent stimulator of immune response and induction of LPS leads to acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). ARDS is a life-threatening disease worldwide with a high mortality rate. The immunological effect of LPS with spleen and thymus is well documented; however the impact on membrane phospholipid during endotoxemia has not yet been studied. Hence we aimed to investigate the influence of LPS on spleen and thymus phospholipid and fatty acid composition by 32P]orthophosphate labeling in rats. The in vitro labeling was carried out with phosphate-free medium (saline). Time course, LPS concentration-dependent, pre- and post-labeling with LPS and fatty acid analysis of phospholipid were performed. Labeling studies showed that 50 mu g LPS specifically altered the major phospholipids, phosphatidylcholine and phosphatidylglycerol in spleen and phosphatidylcholine in thymus. Fatty acid analysis showed a marked alteration of unsaturated fatty acids/saturated fatty acids in spleen and thymus leading to immune impairment via the fatty acid remodeling pathway. Our present in vitro lipid metabolic labeling study could open up new vistas for exploring LPS-induced immune impairment in spleen and thymus, as well as the underlying mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ingots with compositions CrSi2-x (with 0 < x < 0.1) were synthesized by vacuum arc melting followed by uniaxial hot pressing for densification. This paper reports the temperature and composition dependence of the electrical resistivity, Seebeck coefficient, and thermal conductivity of CrSi2-x samples in the temperature range of 300 K to 800 K. The silicon-deficient samples exhibited substantial reductions in resistivity and Seebeck coefficient over the measured temperature range due to the formation of metallic secondary CrSi phase embedded in the CrSi2 matrix phase. The thermal conductivity was seen to exhibit a U-shaped curve with respect to x, exhibiting a minimum value at the composition of x = 0.04. However, the limit of the homogeneity range of CrSi2 suppresses any further decrease of the lattice thermal conductivity. As a consequence, the maximum figure of merit of ZT = 0.1 is obtained at 650 K for CrSi1.98.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, we have reported the controlled synthesis of uniformly grown zinc oxide nanoparticles (ZnO NPs) films by a simple, low-cost, and scalable pulsed spray pyrolysis technique. From the surface analysis it is noticed that the as-deposited films have uniformly dispersed NPs-like morphology. The structural studies reveal that these NPs films have highly crystalline hexagonal crystal structure, which are preferentially orientated along the (001) planes. The size of the NPs varied between 5 and 100 nm, and exhibited good stoichiometric chemical composition. Raman spectroscopic analysis reveals that these ZnO NPs films have pure single phase and hexagonal crystal structure. These unique nanostructured films exhibited a low electrical resistivity (5 Omega cm) and high light transmittance (90 %) in visible region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin films of alumina (Al2O3) were deposited over Si < 1 0 0 > substrates at room temperature at an oxygen gas pressure of 0.03 Pa and sputtering power of 60 W using DC reactive magnetron sputtering. The composition of the as-deposited film was analyzed by X-ray photoelectron spectroscopy and the O/Al atomic ratio was found to be 1.72. The films were then annealed in vacuum to 350, 550 and 750 degrees C and X-ray diffraction results revealed that both as-deposited and post deposition annealed films were amorphous. The surface morphology and topography of the films was studied using scanning electron microscopy and atomic force microscopy, respectively. A progressive decrease in the root mean square (RMS) roughness of the films from 1.53 nm to 0.7 nm was observed with increase in the annealing temperature. Al-Al2O3-Al thin film capacitors were then fabricated on p-type Si < 1 0 0 > substrate to study the effect of temperature and frequency on the dielectric property of the films and the results are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crystal structure of trans-atovaquone (antimalarial drug), its polymorph and its stereoisomer (cis) along with five other derivatives with different functional groups have been analyzed. Based on the conformational features of these compounds and the characteristics of the nature of intermolecular interactions, valuable insights into the atomistic details of protein-inhibitor interactions have been derived by docking studies. Atovaquone and its derivatives pack in the crystal lattice using intermolecular O-H center dot center dot center dot O hydrogen bond dimer motifs supported by surrogate weak interactions including C-H center dot center dot center dot O and C-H center dot center dot center dot Cl hydrogen bonds. The docking results of these molecules with cytochrome bc(1) show preferences to form N-H center dot center dot center dot O, O-H center dot center dot center dot O and O-H center dot center dot center dot Cl hydrogen bonds. The involvement of halogen atoms in the binding pocket appears to be significant and is contrary to the theoretically predicted mechanism of protein-ligand docking reported earlier based on mimicking experimental binding results of stigmatellin with cytochrome bc(1). The significance of subtle energy factors controlled by weak intermolecular interactions appears to play a major role in drug binding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article we have demonstrated the influence of growth-temperature on the morphology and orientation of SnS films deposited by thermal evaporation technique. While increasing the growth-temperature, the morphology of SnS films changed from flakes-like nanocrystals to regular cubes, whereas their orientation shifted from <111> to <040> direction. The chemical composition of SnS films gradually changed from sulfur-rich to tin-rich with the increase of growth-temperature. The structural analyzes reveal that the crystal structure of SnS films probably changes from orthorhombic to tetragonal at the growth-temperature of about 410 degrees C. Raman studies show that SnS films grown at all temperatures consist of purely SnS phase, whereas the optical studies reveal that the direct optical bandgap of SnS films decreased with the increase of growth-temperature. From these results it has been emphasized that the morphology and orientation along with electrical and optical properties of nearly stoichiometric SnS films strongly depend on their growth-temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present investigation, efforts were made to study the different frictional responses of materials with varying crystal structure and hardness during sliding against a relatively harder material of different surface textures and roughness. In the experiments, pins were made of pure metals and alloys with significantly different hardness values. Pure metals were selected based on different class of crystal structures, such as face centered cubic (FCC), body centered cubic (BCC), body centered tetragonal (BCT) and hexagonal close packed (HCP) structures. The surface textures with varying roughness were generated on the counterpart plate which was made of H-11 die steel. The experiments were conducted under dry and lubricated conditions using an inclined pin-on-plate sliding tester for various normal loads at ambient environment. In the experiments, it was found that the coefficient of friction is controlled by the surface texture of the harder mating surfaces. Further, two kinds of frictional response, namely steady-state and stick-slip, were observed during sliding. More specifically, stead-state frictional response was observed for the FCC metals, alloys and materials with higher hardness. Stick-slip frictional response was observed for the metals which have limited number of slip systems such as BCT and HCP. In addition, the stick-slip frictional response was dependent on the normal load, lubrication, hardness and surface texture of the counterpart material. However, for a given kind of surface texture, the roughness of the surface affects neither the average coefficient of friction nor the amplitude of stick-slip oscillation significantly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental and simulation studies have uncovered at least two anomalous concentration regimes in water-dimethyl sulfoxide (DMSO) binary mixture whose precise origin has remained a subject of debate. In order to facilitate time domain experimental investigation of the dynamics of such binary mixtures, we explore strength or extent of influence of these anomalies in dipolar solvation dynamics by carrying out long molecular dynamics simulations over a wide range of DMSO concentration. The solvation time correlation function so calculated indeed displays strong composition dependent anomalies, reflected in pronounced non-exponential kinetics and non-monotonous composition dependence of the average solvation time constant. In particular, we find remarkable slow-down in the solvation dynamics around 10%-20% and 35%-50% mole percentage. We investigate microscopic origin of these two anomalies. The population distribution analyses of different structural morphology elucidate that these two slowing down are reflections of intriguing structural transformations in water-DMSO mixture. The structural transformations themselves can be explained in terms of a change in the relative coordination number of DMSO and water molecules, from 1DMSO:2H(2)O to 1H(2)O:1DMSO and 1H(2)O:2DMSO complex formation. Thus, while the emergence of first slow down (at 15% DMSO mole percentage) is due to the percolation among DMSO molecules supported by the water molecules (whose percolating network remains largely unaffected), the 2nd anomaly (centered on 40%-50%) is due to the formation of the network structure where the unit of 1DMSO:1H(2)O and 2DMSO:1H(2)O dominates to give rise to rich dynamical features. Through an analysis of partial solvation dynamics an interesting negative cross-correlation between water and DMSO is observed that makes an important contribution to relaxation at intermediate to longer times.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

How do molecules aggregate in solution, and how do these aggregates consolidate themselves in crystals? What is the relationship between the structure of a molecule and the structure of the crystal it forms? Why do some molecules adopt more than one crystal structure? Why do some crystal structures contain solvent? How does one design a crystal structure with a specified topology of molecules, or a specified coordination of molecules and/or ions, or with a specified property? What are the relationships between crystal structures and properties for molecular crystals? These are some of the questions that are being addressed today by the crystal engineering community, a group that draws from the larger communities of organic, inorganic, and physical chemists, crystallographers, and solid state scientists. This Perspective provides a brief historical introduction to crystal engineering itself and an assessment of the importance and utility of the supramolecular synthon, which is one of the most important concepts in the practical use and implementation of crystal design. It also provides a look to the future from the viewpoint of the author, and indicates some directions in which this field might be moving.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neutron powder diffraction study of Ba(Ti1-xZrx)O-3 at close composition intervals has revealed coexistence of ferroelectric phases: orthorhombic (Amm2) + tetragonal (P4mm) for 0.02 <= x <= 0.05 and rhombohedral (R3m) + orthorhombic (Amm2) for 0.07 <= x < 0.09. These compositions exhibit relatively enhanced piezoelectric properties as compared to their single phase counterparts outside this composition region, confirming the polymorphic phase boundary nature of the phase coexistence regions. (C) 2013 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optical quality single crystals of sodium D-isoascorbate monohydrate were grown by a slow cooling technique. The crystal possesses a bulky prismatic morphology. Thermal analyses indicate that the crystals are stable up to 125 degrees C. The optical transmission window ranges from 307 nm to 1450 nm. The principal refractive indices have been measured employing Brewster's angle method. The crystallographic and the principal dielectric axes coincide with each other such that a lies along Z, b along X and c along Y. The optic axis is oriented 58 degrees (at 532 nm) to the crystallographic a axis in the XZ plane and the crystal is negative biaxial. Type 1 and type 2 phase matching curves are generated and experimentally verified. No polarization dependence of the light absorption was observed confirming the validity of Kleinman's symmetry conjecture, leading to a single nonvanishing nonlinear tensor component. According to Hobden's classification the crystal belongs to class 3. The crystal also exhibits second order noncollinear conic sections. The single shot and multiple shot surface laser damage thresholds are determined to be 32.7 GW cm(-2) and 6.5 GW cm(-2) respectively for 1064 nm radiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Six-membered C,N] cyclopalladated sym N,N',N `'-tri(4-tolyl)guanidines, (ArNH)(2)C=NAr] (sym = symmetrical; Ar = 4-MeC6H4; LH24-tolyl) of the types (C,N)Pd(mu-OC(O)R)](2) (1 and 2), (C,N)Pd(mu-Br)](2) (3), cis-(C,N)PdLBr] (4-7), and (C,N)Pd(acac)] (8) were prepared in high yield by established methods with a view aimed at understanding the influence of the 4-tolyl substituent of the guanidine moiety upon the solution behaviour of 1-8. The composition of 1-8 was confirmed by elemental analysis, IR, and NMR spectroscopy, and mass spectrometry. The molecular structures of 1-6 were determined by single-crystal X-ray diffraction. Palladacycles 1-3 exist as a dimer in transoid conformation in the solid state while 4-6 exist as a monomer with cis configuration around the palladium atom as the Lewis base is placed cis to the Pd-C bond due to antisymbiosis. The NMR spectra of 1-8 revealed the presence of a single isomer in solution and this spectral feature is ascribed to the rapid inversion of the six-membered ``C,N]Pd'' ring due to the presence of sterically less hindered and more symmetrical 4-tolyl substituent in the =NAr unit of the guanidine moiety. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new 3D cadmium(II) coordination polymer, Cd(C2O4)(0.5)Cl(H2O)](n) (1) has been synthesized from a mixture of CdCl2. H2O and (NH4)(2)C2O4 in a slightly acidic pH. Its molecular structure was determined by single crystal X-ray diffraction which reveals that the new polymeric structure consists of simultaneous mu(4)-oxalato, mu-aquo, and mu-chlorido bridges between the metal centers, embedded in distorted pentagonal bipyramidal geometries. On thermal analysis compound exhibits high thermal stability up to 330 degrees C. Compound 1 also exhibits strong fluorescent emission. (c) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we study the effective electron mass (EEM) in Nano wires (NWs) of nonlinear optical materials on the basis of newly formulated electron dispersion relation by considering all types of anisotropies of the energy band constants within the framework of k . p formalism. The results for NWs of III-V, ternary and quaternary semiconductors form special cases of our generalized analysis. We have also investigated the EEM in NWs of Bi, IV-VI, stressed Kane type materials, Ge, GaSb and Bi2Te3 by formulating the appropriate 1D dispersion law in each case by considering the influence of energy band constants in the respective cases. It has been found that the 1D EEM in nonlinear optical materials depend on the size quantum numbers and Fermi energy due to the anisotropic spin orbit splitting constant and the crystal field splitting respectively. The 1D EEM is Bi, IV-VI, stressed Kane type semiconductors and Ge also depends on both the Fermi energy and the size quantum numbers which are the characteristic features of such NWs. The EEM increases with increase in concentration and decreasing film thickness and for ternary and quaternary compounds the EEM increases with increase in alloy composition. Under certain special conditions all the results for all the materials get simplified into the well known parabolic energy bands and thus confirming the compatibility test.