156 resultados para warm deformation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hot deformation behavior of beta-quenched Zr-1 Nb-1Sn was studied in the temperature range 650-1050 degrees C and strain rate range 0.001-100 s(-1) using processing maps. These maps revealed three different domains: a domain of dynamic recovery at temperatures <700 degrees C and at strain rates <3 x 10(-3) s(-1), a domain of dynamic recrystallization in the temperature range 750-950 C-degrees and at strain rates <10(-2) S-1 with a peak at 910 degrees C and 10(-3) S-1 (in alpha + beta phase field), and a domain of large-grain superplasticity in the beta phase field at strain rates <10(-2) s(-1). In order to identify the rate controlling mechanisms involved in these domains, kinetic analysis was carried out to determine the various activation parameters. In addition, the processing maps showed a regime of flow instability spanning both alpha + beta and beta phase fields. The hot deformation behavior of Zr 1Nb-1Sn was compared with that of Zr, Zr-2.5Nb and Zircaloy-2 to bring out the effects of alloy additions. (C) 2006 Elsevier BN. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hot deformation behaviour of Mg–3Al alloy has been studied using the processing-map technique. Compression tests were conducted in the temperature range 250–550 °C and strain rate range 3 × 10−4 to 102 s−1 and the flow stress data obtained from the tests were used to develop the processing map. The various domains in the map corresponding to different dissipative characteristics have been identified as follows: (i) grain boundary sliding (GBS) domain accommodated by slip controlled by grain boundary diffusion at slow strain-rates (<10−3 s−1) in the temperature range from 350 to 450 °C, (ii) two different dynamic recrystallization (DRX) domains with a peak efficiency of 42% at 550 °C/10−1 s−1 and 425 °C/102 s−1 governed by stress-assisted cross-slip and thermally activated climb as the respective rate controlling mechanisms and (iii) dynamic recovery (DRV) domain below 300 °C in the intermediate strain rate range from 3 × 10−2 to 3 × 10−1 s−1. The regimes of flow instability have also been delineated in the processing map using an instability criterion. Adiabatic shear banding at higher strain rates (>101 s−1) and solute drag by substitutional Al atoms at intermediate strain rates (3 × 10−2 to 3 × 10−1 s−1) in the temperature range (350–450 °C) are responsible for flow instability. The relevance of these mechanisms with reference to hot working practice of the material has been indicated. The processing maps of Mg–3Al alloy and as-cast Mg have been compared qualitatively to elucidate the effect of alloying with aluminum on the deformation behaviour of magnesium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An Ocean General Circulation Model of the Indian Ocean with high horizontal (0.25 degrees x 0.25 degrees) and vertical (40 levels) resolutions is used to study the dynamics and thermodynamics of the Arabian Sea mini warm pool (ASMWP), the warmest region in the northern Indian Ocean during January-April. The model simulates the seasonal cycle of temperature, salinity and currents as well as the winter time temperature inversions in the southeastern Arabian Sea (SEAS) quite realistically with climatological forcing. An experiment which maintained uniform salinity of 35 psu over the entire model domain reproduces the ASMWP similar to the control run with realistic salinity and this is contrary to the existing theories that stratification caused by the intrusion of low-salinity water from the Bay of Bengal into the SEAS is crucial for the formation of ASMWP. The contribution from temperature inversions to the warming of the SEAS is found to be negligible. Experiments with modified atmospheric forcing over the SEAS show that the low latent heat loss over the SEAS compared to the surroundings, resulting from the low winds due to the orographic effect of Western Ghats, plays an important role in setting up the sea surface temperature (SST) distribution over the SEAS during November March. During March-May, the SEAS responds quickly to the air-sea fluxes and the peak SST during April-May is independent of the SST evolution during previous months. The SEAS behaves as a low wind, heat-dominated regime during November-May and, therefore, the formation and maintenance of the ASMWP is not dependent on the near surface stratification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Before the onset of the south Asian summer monsoon, sea surface temperature (SST) of the north Indian Ocean warms to 30–32°C. Climatological mean mixed layer depth in spring (March–May) is 10–20 m, and net surface heat flux (Q net ) is 80–100 W m−2 into the ocean. Previous work suggests that observed spring SST warming is small mainly because of (1) penetrative flux of solar radiation through the base of the mixed layer (Q pen ) and (2) advective cooling by upper ocean currents. We estimate the role of these two processes in SST evolution from a two-week Arabian Sea Monsoon Experiment process experiment in April–May 2005 in the southeastern Arabian Sea. The upper ocean is stratified by salinity and temperature, and mixed layer depth is shallow (6 to 12 m). Current speed at 2 m depth is high even under light winds. Currents within the mixed layer are quite distinct from those at 25 m. On subseasonal scales, SST warming is followed by rapid cooling, although the ocean gains heat at the surface: Q net is about 105 W m−2 in the warming phase and 25 W m−2 in the cooling phase; penetrative loss Q pen is 80 W m−2 and 70 W m−2. In the warming phase, SST rises mainly because of heat absorbed within the mixed layer, i.e., Q net minus Q pen ; Q pen reduces the rate of SST warming by a factor of 3. In the second phase, SST cools rapidly because (1) Q pen is larger than Q net and (2) advective cooling is ∼85 W m−2. A calculation using time-averaged heat fluxes and mixed layer depth suggests that diurnal variability of fluxes and upper ocean stratification tends to warm SST on subseasonal timescale. Buoy and satellite data suggest that a typical premonsoon intraseasonal cooling event occurs under clear skies when the ocean is gaining heat through the surface. In this respect, premonsoon SST cooling in the north Indian Ocean is different from that due to the Madden-Julian oscillation or monsoon intraseasonal oscillation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermally activated plastic flow of polycrystalline cadmium was investigated by differentialstress creep tests at 86°K and tensile tests in the temperature range 86°–473°K. The activation energy (0.55 eV) at zero effective stress and the activation volume as a function of effective stress were obtained. It is concluded that intersection of glide and forest dislocations becomes rate controlling for low temperature deformation. The approximate stacking-fault width in cadmium is deduced to be “1.5b”.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple model is developed to represent the strength and deformational characteristics of concrete when subjected to a rate of strain or rate of stress or creep or relaxation testing under uniaxial compression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dislocation mechanisms for plastic flow in quenched AlMg alloys with 0.45, 0.9, 2.7 and 6.4 at. % Mg were investigated using tensile tests and change-in-stress creep experiments in the temperaturhttp://eprints.iisc.ernet.in/cgi/users/home?screen=EPrint::Edit&eprintid=28109&stage=core#te range 87° -473° K. The higher the magnesium content in the alloy, the higher was the temperature dependence of flow stress. The alloys showed no perceptible creep in the vicinity of room temperature, while they crept at lower as well as higher temperatures. The most probable cause of hardening at temperatures below ∼ 200° K was found to be the pinning of dislocations by randomly distributed solute atoms, while athermal locking of dislocations by dynamic strain ageing during creep was responsible for the negligibly small creep rate in the room temperature range.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low-temperature plastic flow in copper was investigated by studying its tensile and creep deformation characteristics. The dependence of the flow stress on temperature and strain rate was used to evaluate the thermal activation energy while the activation area was derived from the change-in-stress creep experiments. A value of 0.6 eV was obtained for the total obstacle energy both in electrolytic and commerical copper. The activation areas in copper of three selected purities fell in the range 1200 to 100 b2. A forest intersection mechanism seems to control the temperature dependent part of the flow stress. The increase in the athermal component of the flow stress with impurity content in copper is attributed to a change in the dislocation density. The investigation also revealed that thermal activation of some attractive junctions also takes place during low-temperature creep. The model of attractive junction formation on a stress decrement during creep, yields a value of 45±10 ergs cm-2 for the stacking fault energy in copper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The low-temperature plastic flow of alpha-zirconium was studied by employing constantrate tensile tests and differential-stress creep experiments. The activation parameters, enthalpy and area, have been obtained as a function of stress for pure, as well as commercial zirconium. The activation area is independent of grain size and purity and falls to about 9b2 at high stresses. The deformation mechanism below about 700° K is found to be controlled by a single thermally activated process, and not a two-stage activation mechanism. Several dislocation mechanisms are examined and it is concluded that overcoming the Peierls energy humps by the formation of kink pairs in a length of dislocation is the rate-controlling mechanism. The total energy needed to nucleate a double kink is about 0.8 eV in pure zirconium and 1 eV in commercial zirconium

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The authors are grateful to Professor K. P. Abraham for the provision of facilities and encouragement. One of us (PRR) acknowledges the award of a National Associateship by the UGC which facilitated a short-time visit to the Indian Institute of Science.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study is to experimentally investigate the interaction of inelastic deformation and microstructural changes of two Zr-based bulk metallic glasses (BMGs): Zr41.25Ti13.75Cu12.5Ni10Be22.5 (commercially designated as Vitreloy 1 or Vit1) and Zr46.75Ti8.25Cu7.5Ni10Be27.5 (Vitreloy 4, Vit4). High-temperature uniaxial compression tests were performed on the two Zr alloys at various strain rates, followed by structural characterization using differential scanning calorimetry (DSC) and transmission electron microscopy (TEM). Two distinct modes of mechanically induced atomic disordering in the two alloys were observed, with Vit1 featuring clear phase separation and crystallization after deformation as observed with TEM, while Vit4 showing only structural relaxation with no crystallization. The influence of the structural changes on the mechanical behaviors of the two materials was further investigated by jump-in-strain-rate tests, and flow softening was observed in Vit4. A free volume theory was applied to explain the deformation behaviors, and the activation volumes were calculated for both alloys.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of power-law plasticity (yield strength and strain hardening exponent) on the plastic strain distribution underneath a Vickers indenter was systematically investigated by recourse to three-dimensional finite element analysis, motivated by the experimental macro-and micro-indentation on heat-treated Al-Zn-Mg alloy. For meaningful comparison between simulated and experimental results, the experimental heat treatment was carefully designed such that Al alloy achieve similar yield strength with different strain hardening exponent, and vice versa. On the other hand, full 3D simulation of Vickers indentation was conducted to capture subsurface strain distribution. Subtle differences and similarities were discussed based on the strain field shape, size and magnitude for the isolated effect of yield strength and strain hardening exponent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our concern here is to rationalize experimental observations of failure modes brought about by indentation of hard thin ceramic films deposited on metallic substrates. By undertaking this exercise, we would like to evolve an analytical framework that can be used for designs of coatings. In Part I of the paper we develop an algorithm and test it for a model system. Using this analytical framework we address the issue of failure of columnar TiN films in Part II [J. Mater. Res. 21, 783 (2006)] of the paper. In this part, we used a previously derived Hankel transform procedure to derive stress and strain in a birefringent polymer film glued to a strong substrate and subjected to spherical indentation. We measure surface radial strains using strain gauges and bulk film stresses using photo elastic technique (stress freezing). For a boundary condition based on Hertzian traction with no film interface constraint and assuming the substrate constraint to be a function of the imposed strain, the theory describes the stress distributions well. The variation in peak stresses also demonstrates the usefulness of depositing even a soft film to protect an underlying substrate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tribology of a well known solid lubricant molybdenum disulphide is studied here in water and oil medium, over a large range of contact dimensions. Lateral force microscopy is used to identify the deformation modes, intra-crystalline slip, plastic grooving, fragmentation and fracture, of single particles The medium and agglomeration were found to dictate the deformation mode Steel on steel tribology lubricated by suspensions of these particles in liquid media was conducted over a range of contact pressure and sliding velocity. A scrutiny of the frictional data with the aid of Raman spectroscopy to identify the transfer film, suggested that the particle size, as it is at contact, is an important tribological parameter Ultrasonication of the suspension and dispersion of the particle by surfactants were used to control the apriori particle size fed into the suspension.Correspondence of friction data of the gently sonicated suspension with that of the ultrasonicated suspension with dispersants indicated the importance of liquid ingestion by these particles as it controls their mode of deformation and consequent tribology. (C) 2010 Elsevier B V All rights reserved.