255 resultados para vegetation structure
Resumo:
A hydrothermal reaction of Mn(OAc)2·4H2O, trimesic acid, imidazole, KOH and water at 75 °C for 24 h gave rise to a 2-D compound, [HImd][Mn(BTC)(H2O)] (Imd = imidazole; BTC = trimesate), with protonated imidazole molecules occupying the inter-lamellar space, and the structure resembles the classic inorganic compound, the sodium intercalated TiS2 (Na2TiS2).
Resumo:
Background: A genetic network can be represented as a directed graph in which a node corresponds to a gene and a directed edge specifies the direction of influence of one gene on another. The reconstruction of such networks from transcript profiling data remains an important yet challenging endeavor. A transcript profile specifies the abundances of many genes in a biological sample of interest. Prevailing strategies for learning the structure of a genetic network from high-dimensional transcript profiling data assume sparsity and linearity. Many methods consider relatively small directed graphs, inferring graphs with up to a few hundred nodes. This work examines large undirected graphs representations of genetic networks, graphs with many thousands of nodes where an undirected edge between two nodes does not indicate the direction of influence, and the problem of estimating the structure of such a sparse linear genetic network (SLGN) from transcript profiling data. Results: The structure learning task is cast as a sparse linear regression problem which is then posed as a LASSO (l1-constrained fitting) problem and solved finally by formulating a Linear Program (LP). A bound on the Generalization Error of this approach is given in terms of the Leave-One-Out Error. The accuracy and utility of LP-SLGNs is assessed quantitatively and qualitatively using simulated and real data. The Dialogue for Reverse Engineering Assessments and Methods (DREAM) initiative provides gold standard data sets and evaluation metrics that enable and facilitate the comparison of algorithms for deducing the structure of networks. The structures of LP-SLGNs estimated from the INSILICO1, INSILICO2 and INSILICO3 simulated DREAM2 data sets are comparable to those proposed by the first and/or second ranked teams in the DREAM2 competition. The structures of LP-SLGNs estimated from two published Saccharomyces cerevisae cell cycle transcript profiling data sets capture known regulatory associations. In each S. cerevisiae LP-SLGN, the number of nodes with a particular degree follows an approximate power law suggesting that its degree distributions is similar to that observed in real-world networks. Inspection of these LP-SLGNs suggests biological hypotheses amenable to experimental verification. Conclusion: A statistically robust and computationally efficient LP-based method for estimating the topology of a large sparse undirected graph from high-dimensional data yields representations of genetic networks that are biologically plausible and useful abstractions of the structures of real genetic networks. Analysis of the statistical and topological properties of learned LP-SLGNs may have practical value; for example, genes with high random walk betweenness, a measure of the centrality of a node in a graph, are good candidates for intervention studies and hence integrated computational – experimental investigations designed to infer more realistic and sophisticated probabilistic directed graphical model representations of genetic networks. The LP-based solutions of the sparse linear regression problem described here may provide a method for learning the structure of transcription factor networks from transcript profiling and transcription factor binding motif data.
Resumo:
Quinuclidine grafted cationic bile salts are forming salted hydrogels. An extensive investigation of the effect of the electrolyte and counterions on the gelation has been envisaged. The special interest of the quinuclidine grafted bile salt is due to its broader experimental range of gelation to study the effect of electrolyte. Rheological features of the hydrogels are typical of enthalpic networks exhibiting a scaling law of the elastic shear modulus with the concentration (scaling exponent 2.2) modeling cellular solids in which the bending modulus is the dominant parameter. The addition of monovalent salt (NaCl) favors the formation of gels in a first range (0.00117 g cm-3 (0.02 M) < TNaCl < 0.04675 g cm-3 (0.8 M)). At larger salt concentrations, the gels become more heterogeneous with nodal zones in the micron scale. Small-angle neutron scattering experiments have been used to characterize the rigid fibers (
Resumo:
Reaction between PdCl2 and 1-alkyl-2-(arylazo)imidazole (RaaiR') or 1-alkyl-2-(naphthyl-alpha/beta-azo)imidazole (alpha/beta-NaiR') under reflux in ethanol has isolated complexes of compositions Pd(RaaiR')(2)Cl-2 (5, 6) and Pd(alpha/beta-NaiR')(2)Cl-2 (7, 8). The X-ray structure determination of one of the molecules, Pd(alpha-NaiBz)(2)Cl-2 (7c), has reported a trans-PdCl2 configuration, and alpha-NaiBz acts as monodentate N(imidazole) donor ligand. The spectral (IR, UV-vis, H-1 NMR) data support the structure. UV light irradiation (light source: Perkin-Elmer LS 55 spectrofluorimeter, Xenon discharge lamp, lambda = 360-396 nm) in a MeCN solution of the complexes shows E-to-Z isomerization of the coordinated azoimidazole unit. The reverse transformation, Z-to-E, is very slow with visible light irradiation. Quantum yields (phi(E-Z)) of E-to-Z isomerization are calculated, and phi is lower than that of the free ligand but comparable with those of Cd(II) and Hg(II) complexes of the same ligand. The Z-to-E isomerization is a thermally induced process. The activation energy (E-a) of Z-to-E isomerization is calculated by controlled-temperature experimentation. cis-Pd(azoimidazole)Cl-2 complexes (azomidazole acts as N(imidazole) and N(azo) Chelating ligand) do not respond upon light irradiation, which supports the idea that the presence of noncoordinated azo-N to make free azo (-N=N-) function is important to reveal photochromic activity. DFT calculation of Pd(alpha-NaiBz)(2)Cl-2 (7c) has suggested that the HOMO of the molecule is constituted of Pd (32%) and Cl (66%), and hence photo excitation may use the energy of Pd and Cl instead of that of the photofunctional -N=N-Ar motif; thus, the rate of photoisomerization and quantum yield decrease versus the free ligand values.
Resumo:
[NiL2(NCS)2] (1) [L = 2-(aminomethyl)pyridine], [NiL02(NCS)2] (2) [(L0) = 2-(2-aminoethyl)pyridine and [NiL00 2(NCS)2] (3) [L00 = 2-(2-methylaminoethyl)pyridine] have been synthesized from solution. All the complexes possess trans geometry as is evident from solid state UV–Vis spectral study and X-ray single crystal structure analysis of complex 2 unambiguously proves trans geometry of the species.
Resumo:
Sr2FeMoO6 oxides exhibit a half-metallic ferromagnetic (HM-FM) ground state and peculiar magnetic and magnetotransport properties, which are interesting for applications in the emerging field of spintronics and attractive for fundamental research in the field of heavily correlated electron systems. Sr2FeWO6 is an insulator with an antiferromagnetic (I-AFM) ground state. The solid solutions Sr2FeMoxW1-xO6 also have peculiar properties-W doping enhances chemical order which allows stabilization of the HM-FM state; as the W content exceeds a certain value a metal to insulator transition (MIT) occurs. The role of W in determining the physical properties of Sr2FeMoxW1-xO6 systems has been a matter of intense investigation. This work deals with the problem of the structural and electronic changes related to the MIT from a local perspective by means of x-ray absorption spectroscopy (XAS). This technique allows one to probe in detail the local structure and electronic modifications around selected absorber ions (W, Mo, Fe and Sr in our case). The results of XAS analysis in the whole composition range (0 <= x <= 1), in the near edge (XANES) and extended (EXAFS) regions, demonstrate an abrupt change of the local structure around the Fe and Mo sites at the critical composition, x(c). This change represents the microstructural counterpart associated with the MIT. Conversely, the local structure and electronic configuration of W ions remain unaltered in the whole composition range, suggesting indirect participation of W in the MIT.
Resumo:
The genomic sequences of several RNA plant viruses including cucumber mosaic virus, brome mosaic virus, alfalfa mosaic virus and tobacco mosaic virus have become available recently. The former two viruses are icosahedral while the latter two are bullet and rod shaped, respectively in particle morphology. The non-structural 3a proteins of cucumber mosaic virus and brome mosaic virus have an amino acid sequence homology of 35% and hence are evolutionarily related. In contrast, the coat proteins exhibit little homology, although the circular dichroism spectrum of these viruses are similar. The non-coding regions of the genome also exhibit variable but extensive homology. Comparison of the brome mosaic virus and alfalfa mosaic virus sequences reveals that they are probably related although with a much larger evolutionary distance. The polypeptide folds of the coat protein of three biologically distinct isometric plant viruses, tomato bushy stunt virus, southern bean mosaic virus and satellite tobacco necrosis virus have been shown to display a striking resemblance. All of them consist of a topologically similar 8-standard β-barrel. The implications of these studies to the understanding of the evolution of plant viruses will be discussed.
Resumo:
M r= 975.9, orthorhombic, Pnna, a = 20.262 (3), b= 15.717 (2), c= 15.038 (1)A, V= 4788.97 A 3, z = 4, D x = 1.35 Mg m -3, Cu Kct radiation, 2 = 1.5418 A, /t = 2.79 mm -1, F(000) -= 2072, T = 293 K, R = 0.08, 3335 observed reflections. The molecular structure and the crystal packing are similar to those observed in the nonactin complexes of sodium thiocyanate and potassium thiocyanate. The eight metal-O distances are nearly the same in the potassium complex whereas the four distances involving carbonyl O atoms are shorter than the remaining four involving the tetrahydrofuran-ring O atoms in the Na and the Ca complexes. This observation can be explained in terms of the small ionic radii of Na + and Ca 2+, and leads to a plausible structural rationale for the stronger affinity of nonactin for K + than for the other two metal ions.
Resumo:
Na+.C6HI209 P-, Mr=282.1, monoclinic, e2~, a=5-762(1), b=7.163(2), c=12.313(1)A, fl= 99.97 (1) °, U= 500.5 A 3, Z= 2, D m = 1.86, D x = 1.87 Mg m -s, Cu Ka, 2 = 1.5418 A, /a = 3-3 mm -1, F(000) = 292, T= 300 K, final R for 922 observed reflections is 0-042. The phosphate ester bond, P-O(6), is 1.575 (5)A, slightly shorter than the P~O bond in monopotassium phosphoenolpyruvate [1.612 (6) A] [Hosur & Viswamitra (1981). Acta Cryst. B37, 839-843]. The pyranose sugar ring takes a 4C 1 chair conformation. The conformation about the exocyclic C(5)-C(6) bond is gauche-trans. The endocyclic C-O bonds in the glucose ring are nearly equal with C(5)-O(5) = 1.435 (8) and C(1)-O(5) = 1.436 (9) A. The sodium ion has seven near neighbours within a distance of 2.9 A. The crystal structure is stabilized by hydrogen bonds between the O atoms of symmetryrelated molecules.
Resumo:
The structure and conformation of a second crystalline modification of 19-nortestosterone has been determined by X-ray methods. M r = 274, monoclinic P2 l, a=9.755(2), b= 11.467(3), c= 14.196(3)/L fl=101.07(2) ° , V=1558.4 (8) A 3, Z=4, Ox= I. 168 g cm -3, Mo Ka, 2 = 0.7107 ,/k, ~ = 0.80 cm -l, F(000) = 600, T= 300 K. R = 0.060 for 2158 observed reflections. The two molecules in the asymmetric unit show significant differences in the A-ring conformation from that of the previously reported form of the title compound [Precigoux, Busetta, Courseille & Hospital (1975). Acta Cryst. B31, 1527-1532]. The l a,2fl-half-chair conformation of the A ring increases its conformational freedom compared with testosterone.
Resumo:
M r= 470.46, rhombohedral, R3, a =8.710(4)A, a=91.10(3) o, V= 660.4 (9) A 3, Z= 1,D m= 1.170 (flotation in KI solution), D x=1.183 Mg m -a, Mo Kct, 2 = 0.7107/~,, /t =0.033 mm -1, F(000) - 248.0, T= 293 K, R -- 4.6%(481 unique reflections). The molecule has C a symmetry and is propeller shaped, the angle of twist about the B-C bond being 41.5 (7) °. The space group being chiral, this is yet another example of spontaneous resolution. The results of a thermal-motion analysis are discussed.
Resumo:
The use of two liquid crystals as solvents in the determination of molecular structure has been demonstrated for systems which do not provide structural information from studies in a single solvent owing to the fact that the spectra are deceptively simple, with the result that all the spectral parameters cannot be derived with reasonable precision. The specific system studied was 2-(p-bromophenyl)-4,6-dichloropyrimidine, for which relative inter-proton discances have been determined from the proton NMR spectra in two nematic solvents.
Resumo:
M r = 326.3, monoclinic, P21, a --= 6.510 (2), b=8.432 (2), c= 15.114 (2),a, /~= 101.42 (3) ° , Z = 2, V= 813.15 A 3, D x = 1-33 Mg m -3, F(000) = 172, 2(Cu Ka) = 1.5418/~,, g(Cu Ka) = 0.906 mm -~, final R = 6.4% for 1924 observed counter reflections. The conformation about the glycosidic bond is syn [torsion angle C(6)-N(1)-C(1')-O(4')=-103.9(3)°]. The sugar pucker is C(2')-exo,C(3')-endo (3Tz). The conformation about the C(4')-C(5') bond is gauche-trans. An uncommon intermolecular hydrogen bond involving the ribose-ring oxygen O(1') and the base-nitrogen N(3) stabilizes the crystal structure.
Resumo:
Near threshold fatigue crack growth behavior of a high strength steel under different temper levels was investigated. It is found that the observed variations in ΔKth could predominantly be attributed to roughness induced crack closure. The closure-free component of the threshold stress intensity range, ΔKeff,th showed a systematic variation with monotonic yield strength.
Resumo:
C13H14N2OS, M r = 246, is monoclinic, P21/c, with a = 7.214(1), b = 8.935(5), c = 20.243 (6) A, fl =99.42 (2) °, V = 1304.83 ,~3, Z = 4, D m = 1.23, D x =1.25 Mg m -3, p(Mo Ka, 2 = 0.7107 A) = 0.232 mm -~,F(000) = 520. The structure was solved by direct methods and refined to an R value of 0.042 using 1127 intensity measurements. The C=C and C-N bond distances differ considerably from their normal values. An appreciable rotation [38.3(4) °] about the C=C bond is observed, the bond length being 1.414(5)A.This is due to the combination of push-pull and steric effects.