587 resultados para structural relaxation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A molecular theory of collective orientational relaxation of dipolar molecules in a dense liquid is presented. Our work is based on a generalized, nonlinear, Smoluchowski equation (GSE) that includes the effects of intermolecular interactions through a mean‐field force term. The effects of translational motion of the liquid molecules on the orientational relaxation is also included self‐consistently in the GSE. Analytic expressions for the wave‐vector‐dependent orientational correlation functions are obtained for one component, pure liquid and also for binary mixtures. We find that for a dipolar liquid of spherical molecules, the correlation function ϕ(k,t) for l=1, where l is the rank of the spherical harmonics, is biexponential. At zero wave‐vector, one time constant becomes identical with the dielectric relaxation time of the polar liquid. The second time constant is the longitudinal relaxation time, but the contribution of this second component is small. We find that polar forces do not affect the higher order correlation functions (l>1) of spherical dipolar molecules in a linearized theory. The expression of ϕ(k,t) for a binary liquid is a sum of four exponential terms. We also find that the wave‐vector‐dependent relaxation times depend strongly on the microscopic structure of the dense liquid. At intermediate wave vectors, the translational diffusion greatly accelerates the rate of orientational relaxation. The present study indicates that one must pay proper attention to the microscopic structure of the liquid while treating the translational effects. An analysis of the nonlinear terms of the GSE is also presented. An interesting coupling between the number density fluctuation and the orientational fluctuation is uncovered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A unified treatment of polarization relaxation, dielectric dispersion and solvation dynamics in a dense, dipolar liquid is presented. It is shown that the information of solvent polarization relaxation that is obtained by macroscopic dielectric dispersion experiments is not sufficient to understand dynamics of solvation of a newly created ion or dipole. In solvation, a significant contribution comes from intermediate wave vector processes which depend critically on the short range (nearest‐neighbor) spatial and orientational order that are present in a dense, dipolar liquid. An analytic expression is obtained for the time dependent solvation energy that depends, in addition to the translational and rotational diffusion coefficients of the liquid, on the ratio of solute–solvent molecular sizes and on the microscopic structure of the polar liquid. Mean spherical approximation (MSA) theory is used to obtain numerical results for polarization relaxation, for wave vector and frequency dependent dielectric function and for time dependent solvation energy. We find that in the absence of translational contribution, the solvation of an ion is, in general, nonexponential. In this case, the short time decay is dominated by the longitudinal relaxation time but the long time decay is dominated by much slower large wave vector processes involving nearest‐neighbor molecules. The presence of a significant translational contribution drastically alters the decay behavior. Now, the long‐time behavior is given by the longitudinal relaxation time constant and the short time dynamics is controlled by the large wave vector processes. Thus, although the continuum model itself is conceptually wrong, a continuum model like result is recovered in the presence of a sizeable translational contribution. The continuum model result is also recovered in the limit of large solute to solvent size ratio. In the opposite limit of small solute size, the decay is markedly nonexponential (if the translational contribution is not very large) and a complete breakdown of the continuum model takes place. The significance of these results is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A microscopic theoretical calculation of time-dependent solvation energy shows that the solvation of an ion or a dipole is dominated by a single relaxation time if the translational contribution to relaxation is significant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A microscopic study of the non‐Markovian (or memory) effects on the collective orientational relaxation in a dense dipolar liquid is carried out by using an extended hydrodynamic approach which provides a reliable description of the dynamical processes occuring at the molecular length scales. Detailed calculations of the wave‐vector dependent orientational correlation functions are presented. The memory effects are found to play an important role; the non‐Markovian results differ considerably from that of the Markovian theory. In particular, a slow long‐time decay of the longitudinal orientational correlation function is observed for dense liquids which becomes weaker in the presence of a sizeable translational contribution to the collective orientational relaxation. This slow decay can be attributed to the intermolecular correlations at the molecular length scales. The longitudinal component of the orientational correlation function becomes oscillatory in the underdamped limit of momenta relaxations and the frequency dependence of the friction reduce the frictional resistance on the collective excitations (commonly known as dipolarons) to make them long lived. The theory predicts that these dipolarons can, therefore, be important in chemical relaxation processes, in contradiction to the claims of some earlier theoretical studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A molecular theory of dielectric relaxation in a dense binary dipolar liquid is presented. The theory takes into account the effects of intra- and interspecies intermolecular interactions. It is shown that the relaxation is, in general, nonexponential. In certain limits, we recover the biexponential form traditionally used to analyze the experimental data of dielectric relaxation in a binary mixture. However, the relaxation times are widely different from the prediction of the noninteracting rotational diffusion model of Debye for a binary system. Detailed numerical evaluation of the frequency-dependent dielectric function epsilon-(omega) is carried out by using the known analytic solution of the mean spherical approximation (MSA) model for the two-particle direct correlation function for a polar mixture. A microscopic expression for both wave vector (k) and frequency (omega) dependent dielectric function, epsilon-(k,omega), of a binary mixture is also presented. The theoretical predictions on epsilon-(omega) (= epsilon-(k = 0, omega)) have been compared with the available experimental results. In particular, the present theory offers a molecular explanation of the phenomenon of fusing of the two relaxation channels of the neat liquids, observed by Schallamach many years ago.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is shown from an analytical theory that the solvation dynamics of a small ion can be controlled largely by the inertial response of the dipolar solvent when the liquid is in the underdamped limit. It is also shown that this inertial response arises primarily from the long wavelength (with wavevector k≃0) processes which have a collective excitation-like behaviour. The long time decay is dominated by the processes occurring at molecular lengthscales. The theoretical results are in good agreement with recent computer simulation results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microscopic relations between single-particle orientational relaxation time (T, ) , dielectric relaxation time ( T ~ )a,n d many-body orientational relaxation time ( T ~o)f a dipolar liquid are derived. We show that both T~ and T~ are influenced significantly by many-body effects. In the present theory, these many-body effects enter through the anisotropic part of the two-particle direct correlation function of the polar liquid. We use mean-spherical approximation (MSA) for dipolar hard spheres for explicit numerical evaluation of the relaxation times. We find that, although the dipolar correlation function is biexponential, the frequency-dependent dielectric constant is of simple Debye form, with T~ equal to the transverse polarization relaxation time. The microscopic T~ falls in between Debye and Onsager-Glarum expressions at large values of the static dielectric constant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article we present a new, general but simple, microscopic expression for time-dependent solvation energy of an ion. This expression is surprisingly similar to the expression for the time-dependent dielectric friction on a moving ion. We show that both the Chandra-Bagchi and the Fried-Mukamel formulations of solvation dynamics can be easily derived from this expression. This expression leads to an almost perfect agreement of the theory with all the available computer simulation results. Second, we show here for the first time that the mobility of a light solute ion can significantly accelerate its own solvation, specially in the underdamped limit. The latter result is also in excellent agreement with the computer simulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The π-electronic excitations and excited-state geometries of trans-stilbene (tS) are found by combining exact solutions of the Pariser-Parr-Pople (PPP) model and semiempirical Parametric Method 3 (PM3) calculations. Comprehensive comparisons with tS spectra are obtained and related to the fluorescence and topological alternation of poly(paraphenylenevinylene) (PPV). The one-photon absorption and triplet of tS correspond, respectively, to singlet and triplet bipolarons confined to two phenyls, while the tS2- ground state is a confined charged bipolaron. Independent estimates of the relaxation energy between vertical and adiabatic excitation show the bipolaron binding energy to depend on both charge and spin, as expected for interacting π electrons in correlated or molecular states. Complete configuration interaction within the PPP model of tS accounts for the singlet-triplet gap, for the fine-structure constants and triplet-triplet spectra, for two-photon transitions and intensities, and for one-photon spectra and the radiative lifetime, although the relative position of nearly degenerate covalent and ionic singlets is not resolved. The planar PM3 geometry and low rotational barrier of tS agree with resolved rotational and vibrational spectra in molecular beams. PM3 excitation and relaxation energies for tS bipolarons are consistent with experiment and with PPP results. Instead of the exciton model, we interpret tS excitations in terms of states that are localized on each ring or extended over an alternating chain, as found exactly in Hückel theory, and find nearly degenerate transitions between extended and localized states in the singlet, triplet, and dianion manifolds. The large topological alternation of the extended system increases the ionicity and interchanges the order of the lowest one- and two-photon absorption of PPV relative to polyenes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A molecular theory of underdamped dielectric relaxation of a dense dipolar liquid is presented. This theory properly takes into account the collective effects that are present (due to strong intermolecular correlations) in a dipolar liquid. For small rigid molecules, the theory again leads to a three-variable description which, however, is somewhat different from the traditional version. In particular, two of the three parameters are collective in nature and are determined by the orientational pair correlation function. A detailed comparison between the theory and the computer simulation results of Neria and Nitzan is performed and an excellent agreement is obtained without the use of any adjustable or free parameter - the calculation is fully microscopic. The theory can also provide a systematic description of the Poley absorption often observed in dipolar liquids in the high-frequency regime.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Influence of succinonitrile (SN) dynamics on ion transport in SN-lithium perchlorate (LiClO4) electrolytes is discussed here via dielectric relaxation spectroscopy. Dielectric relaxation spectroscopy (similar to 2 x 10(-3) Hz to 3 MHz) of SN and SN-LiClO4 was studied as a function of salt content (up to 7 mol % or 1 M) and temperature (-20 to +60 degrees C). Analyses of real and imaginary parts of permittivity convincingly reveal the influence Of trans gauche isomerism and solvent-salt association (solvation) effects on ion transport. The relaxation processes are highly dependent on the salt concentration and temperature. While pristine SN display only intrinsic dynamics (i.e., trans-gauche isomerism) which enhances with an increase in temperature, SN-LiClO4 electrolytes especially at high salt concentrations (similar to 0.04-1 M) show salt-induced relaxation processes. In the concentrated electrolytes, the intrinsic dynamics was observed to be a function of salt content, becoming faster with an increase in salt concentration. Deconvolution of the imaginary part of the permittivity spectra using Havriliak-Negami (HN) function show a relaxation process corresponding to the above phenomena. The permittivity data analyzed using HN and Kohlrausch-Williams-Watta (KWW) functions show non-Debye relaxation processes and enhancement in the trans phase (enhanced solvent dynamics) as a function of salt concentration and temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Extensive molecular dynamics simulations have been carried out to calculate the orientational correlation functions Cl(t), G(t) = [4n/(21 + l)]Ci=-l (Y*lm(sZ(0)) Ylm(Q(t))) (where Y,,(Q) are the spherical harmonics) of point dipoles in a cubic lattice. The decay of Cl(t) is found to be strikingly different from higher l-correlation functions-the latter do not exhibit diffusive dynamics even in the long time. Both the cumulant expansion expression of Lynden-Bell and the conventional memory function equation provide very good description of the Cl(t) in the short time but fail to reproduce the observed slow, long time decay of c1 (t) .

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An important yet unsolved problem in the field of orientational relaxation in dipolar liquids is the dependence of the correlation functions C(l)(t), C(l)(t) = [4pi/(2l + 1)SIGMA(m = -l)l [Y(lm)(OMEGA(0)Y(lm)(OMEGA(t))] on the rank l (where Y(lm)(OMEGA) are the usual spherical harmonics). The existing theories on this effect differ in their predictions. To investigate this, we have carried out extensive computer simulations of a Brownian dipolar lattice. The dielectric friction was found to decrease rapidly with increasing l, in qualitative agreement with the predictions of Hubbard-Wolynes. However, the observed effect is much stronger than the predictions of the existing theories.