34 resultados para repeated game
Resumo:
Experiments on micrograined (mg) and nanocrystalline (nc) Ni revealed strengthening and weakening following repeated dynamic impact. The strengthening in mg-Ni arises from intragranular dislocations without a significant change in grain size, whereas the weakening in nc-Ni is due to concurrent grain growth. The strength of mg and nc-Ni samples after deformation settles at similar to 900 MPa, with differing contributions from intragranular dislocations and grain sizes. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
We propose a new approach to clustering. Our idea is to map cluster formation to coalition formation in cooperative games, and to use the Shapley value of the patterns to identify clusters and cluster representatives. We show that the underlying game is convex and this leads to an efficient biobjective clustering algorithm that we call BiGC. The algorithm yields high-quality clustering with respect to average point-to-center distance (potential) as well as average intracluster point-to-point distance (scatter). We demonstrate the superiority of BiGC over state-of-the-art clustering algorithms (including the center based and the multiobjective techniques) through a detailed experimentation using standard cluster validity criteria on several benchmark data sets. We also show that BiGC satisfies key clustering properties such as order independence, scale invariance, and richness.
Resumo:
The classical Erdos-Szekeres theorem states that a convex k-gon exists in every sufficiently large point set. This problem has been well studied and finding tight asymptotic bounds is considered a challenging open problem. Several variants of the Erdos-Szekeres problem have been posed and studied in the last two decades. The well studied variants include the empty convex k-gon problem, convex k-gon with specified number of interior points and the chromatic variant. In this paper, we introduce the following two player game variant of the Erdos-Szekeres problem: Consider a two player game where each player playing in alternate turns, place points in the plane. The objective of the game is to avoid the formation of the convex k-gon among the placed points. The game ends when a convex k-gon is formed and the player who placed the last point loses the game. In our paper we show a winning strategy for the player who plays second in the convex 5-gon game and the empty convex 5-gon game by considering convex layer configurations at each step. We prove that the game always ends in the 9th step by showing that the game reaches a specific set of configurations.
Resumo:
We consider a system with multiple Femtocells operating in a Macrocell. The transmissions in one Femtocell interfere with its neighboring Femtocells as well as with the Macrocell Base Station. We model Femtocells as selfish nodes and the Macrocell Base Station protects itself by pricing subchannels for each usage. We use Stackelberg game model to study this scenario and obtain equilibrium policies that satisfy certain quality of service.