37 resultados para regulation and control


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interferon-gamma (Ifn gamma), a known immunomodulatory cytokine, regulates cell proliferation and survival. In this study, the mechanisms leading to the selective susceptibility of some tumor cells to Ifn gamma were deciphered. Seven different mouse tumor cell lines tested demonstrated upregulation of MHC class I to variable extents with Ifn gamma; however, only the cell lines, H6 hepatoma and L929 fibrosarcoma, that produce higher amounts of nitric oxide (NO) and reactive oxygen species (ROS) are sensitive to Ifn gamma-induced cell death. NO inhibitors greatly reduce Ifn gamma-induced ROS; however, ROS inhibitors did not affect the levels of Ifn gamma-induced NO, demonstrating that NO regulates ROS. Consequently, NO inhibitors are more effective, compared to ROS inhibitors, in reducing Ifn gamma-induced cell death. Further analysis revealed that Ifn gamma induces peroxynitrite and 3-nitrotyrosine amounts and a peroxynitrite scavenger, FeTPPS, reduces cell death. Ifn gamma treatment induces the phosphorylation of c-jun N-terminal kinase (Jnk) in H6 and L929 but not CT26, a colon carcinoma cell line, which is resistant to Ifn gamma-mediated death. Jnk activation downstream to NO leads to induction of ROS, peroxynitrite and cell death in response to Ifn gamma. Importantly, three cell lines tested, i.e. CT26, EL4 and Neuro2a, that are resistant to cell death with Ifn gamma alone become sensitive to the combination of Ifn gamma and NO donor or ROS inducer in a peroxynitrite-dependent manner. Overall, this study delineates the key roles of NO as the initiator and Jnk, ROS, and peroxynitrite as the effectors during Ifn gamma-mediated cell death. The implications of these findings in the Ifn gamma-mediated treatment of malignancies are discussed. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interferon-gamma (Ifn gamma), a known immunomodulatory cytokine, regulates cell proliferation and survival. In this study, the mechanisms leading to the selective susceptibility of some tumor cells to Ifn gamma were deciphered. Seven different mouse tumor cell lines tested demonstrated upregulation of MHC class I to variable extents with Ifn gamma; however, only the cell lines, H6 hepatoma and L929 fibrosarcoma, that produce higher amounts of nitric oxide (NO) and reactive oxygen species (ROS) are sensitive to Ifn gamma-induced cell death. NO inhibitors greatly reduce Ifn gamma-induced ROS; however, ROS inhibitors did not affect the levels of Ifn gamma-induced NO, demonstrating that NO regulates ROS. Consequently, NO inhibitors are more effective, compared to ROS inhibitors, in reducing Ifn gamma-induced cell death. Further analysis revealed that Ifn gamma induces peroxynitrite and 3-nitrotyrosine amounts and a peroxynitrite scavenger, FeTPPS, reduces cell death. Ifn gamma treatment induces the phosphorylation of c-jun N-terminal kinase (Jnk) in H6 and L929 but not CT26, a colon carcinoma cell line, which is resistant to Ifn gamma-mediated death. Jnk activation downstream to NO leads to induction of ROS, peroxynitrite and cell death in response to Ifn gamma. Importantly, three cell lines tested, i.e. CT26, EL4 and Neuro2a, that are resistant to cell death with Ifn gamma alone become sensitive to the combination of Ifn gamma and NO donor or ROS inducer in a peroxynitrite-dependent manner. Overall, this study delineates the key roles of NO as the initiator and Jnk, ROS, and peroxynitrite as the effectors during Ifn gamma-mediated cell death. The implications of these findings in the Ifn gamma-mediated treatment of malignancies are discussed. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The sensitivity of combustion phasing and combustion descriptors to ignition timing, load and mixture quality on fuelling a multi-cylinder natural gas engine with bio-derived H-2 and CO rich syngas is addressed. While the descriptors for conventional fuels are well established and are in use for closed loop engine control, presence of H-2 in syngas potentially alters the mixture properties and hence combustion phasing, necessitating the current study. The ability of the descriptors to predict abnormal combustion, hitherto missing in the literature, is also addressed. Results from experiments using multi-cylinder engines and numerical studies using zero dimensional Wiebe function based simulation models are reported. For syngas with 20% H-2 and CO and 2% CH4 (producer gas), an ignition retard of 5 +/- 1 degrees was required compared to natural gas ignition timing to achieve peak load of 72.8 kWe. It is found that, for syngas, whose flammability limits are 0.42-1.93, the optimal engine operation was at an equivalence ratio of 1.12. The same methodology is extended to a two cylinder engine towards addressing the influence of syngas composition, especially H-2 fraction (varying from 13% to 37%), on the combustion phasing. The study confirms the utility of pressure trace derived combustion descriptors, except for the pressure trace first derivative, in describing the MBT operating condition of the engine when fuelled with an alternative fuel. Both experiments and analysis suggest most of the combustion descriptors to be independent of the engine load and mixture quality. A near linear relationship with ignition angle is observed. The general trend(s) of the combustion descriptors for syngas fuelled operation are similar to those of conventional fuels; the differences in sensitivity of the descriptors for syngas fuelled engine operation requires re-calibration of control logic for MBT conditions. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using the dynamic inversion philosophy, a nonlinear partial integrated guidance and control approach is presented in this paper for formation flying. It is based on the evolving philosophy of integrated guidance and control. However, it also retains the advantages of the conventional guidance then control philosophy by retaining the timescale separation between translational and rotational dynamics explicitly. Simulation studies demonstrate that the proposed technique is effective in bringing the vehicles into formation quickly and maintaining the formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Robotic surgical tools used in minimally invasive surgeries (MIS) require miniaturized and reliable actuators for precise positioning and control of the end-effector. Miniature pneumatic artificial muscles (MPAMs) are a good choice due to their inert nature, high force to weight ratio, and fast actuation. In this paper, we present the development of miniaturized braided pneumatic muscles with an outer diameter of similar to 1.2 mm, a high contraction ratio of about 18%, and capable of providing a pull force in excess of 4 N at a supply pressure of 0.8 MPa. We present the details of the developed experimental setup, experimental data on contraction and force as a function of applied pressure, and characterization of the MPAM. We also present a simple kinematics and experimental data based model of the braided pneumatic muscle and show that the model predicts contraction in length to within 20% of the measured value. Finally, a robust controller for the MPAMs is developed and validated with experiments and it is shown that the MPAMs have a time constant of similar to 10 ms thereby making them suitable for actuating endoscopic and robotic surgical tools.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self-assembly of nano sized particles during natural drying causes agglomeration and shell formation at the surface of micron sized droplets. The shell undergoes sol-gel transition leading to buckling at the weakest point on the surface and produces different types of structures. Manipulation of the buckling rate with inclusion of surfactant (sodium dodecyl sulphate, SDS) and salt (anilinium hydrochloride, AHC) to the nano-sized particle dispersion (nanosilica) is reported here in an acoustically levitated single droplet. Buckling in levitated droplets is a cumulative, complicated function of acoustic streaming, chemistry, agglomeration rate, porosity, radius of curvature, and elastic energy of shell. We put forward our hypothesis on how buckling occurs and can be suppressed during natural drying of the droplets. Global precipitation of aggregates due to slow drying of surfactant-added droplets (no added salts) enhances the rigidity of the shell formed and hence reduces the buckling probability of the shell. On the contrary, adsorption of SDS aggregates on salt ions facilitates the buckling phenomenon with an addition of minute concentration of the aniline salt to the dispersion. Variation in the concentration of the added particles (SDS/AHC) also leads to starkly different morphologies and transient behaviour of buckling (buckling modes like paraboloid, ellipsoid, and buckling rates). Tuning of the buckling rate causes a transition in the final morphology from ring and bowl shapes to cocoon type of structure. (C) 2015 AIP Publishing LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the instrumentation and control architecture for a laboratory based two-stage 4-bed silica gel + water adsorption system. The system consists of primarily two fluids: refrigerant (water vapour) and heat transfer fluid (water) flowing through various components. Heat input to the system is simulated using multiple heaters and ambient air is used as the heat sink. The laboratory setup incorporates a real time National Instruments (NI) controller to control several digital and analog valves, heaters, pumps and fans along with simultaneous data acquisition from various flow, pressure and temperature sensors. The paper also presents in detail the various automated and manual tasks required for successful operation of the system. Finally the system pressure and temperature dynamics are reported and its performance evaluated for various cycle times. (C) 2015 Elsevier Ltd. All rights reserved.