111 resultados para refractive index
Resumo:
Studies of ZrO2 films prepared by d.c. reactive magnetron sputtering are described. The effects of substrate temperature on the packing density, refractive index, extinction coefficient and crystallinity phase have been investigated in the temperature range 25–450 °C. The refractive index varied from 1.84 to 1.95 and extinction coefficient from 2 × 10−3 to 9.6 × 10−3. This was explained on the basis of an increase in packing density from 0.686 to 0.813. The change in packing density has been attributed to a decrease in the oxygen condensation at higher temperatures. Annealing results in a decrease in refractive index and increase in extinction coefficient. The films deposited at 150 °C showed a monoclinic phase which transforms to a tetragonal phase at higher substrate temperatures.
Effects of thermal annealing on the properties of zirconia films prepared by ion-assisted deposition
Resumo:
The effect of thermal annealing in the range 300–800 °C on the properties of zirconia films prepared by ion assisted deposition was studied. It was found that at low temperature the cubic phase is formed. This phase is stable up to 700 °C. All the films exhibit a monophasic monoclinic structure at 800 °C. The stress, estimated from X-ray patterns, shows a transition from tensile to compressive with increasing ion fluence. The refractive index and extinction coefficient do not seem to change appreciably up to 700 °C, showing a marked degradation thereafter. Single step annealing to the highest temperature was found to result in better stability than multistep annealing.
Resumo:
Thin films of titanium dioxide have been deposited using ion assisted deposition with oxygen ions in the energy range 100�500 eV and current densities up to 100 ?A/cm2. It has been observed that the refractive index of the films increases up to 300 eV and the extinction coefficient increased only nominally up to 300 eV. Optical band gap calculations have shown a strong dependence of the gap on the energy of incident ions. Beyond a critical energy and current density of the ions the refractive index and extinction coefficient of the films start deteriorating. It has also been found that beyond the critical values the optical band gap value decreases. The maximum refractive index obtained was 2.49 at an energy of 300 eV and 50 ?A/cm2 current density. Post?deposition annealing of the films at 500?°C resulted in a slight increase in refractive index without affecting the extinction coefficient. X?ray diffraction studies revealed a monophasic anatase structure in these films. ?
Resumo:
A novel detection technique to estimate the amount of chirp in fiber Bragg gratings (FBGs) is proposed. This method is based on the fact that reflectivity at central wavelength of FBG reflection changes with strain/temperature gradient (linear chirp) applied to the same. Transfer matrix approach was used to vary different grating parameters (length, strength and apodization) to optimize variation of reflectivity with linear chirp. Analysis is done for different sets of `FBG length-refractive index strength' combinations for which reflectivity vary linearly with linear chirp over a decent measurement range. This article acts as a guideline to choose appropriate grating parameters in designing sensing apparatus based on change in reflectivity at central wavelength of FBG reflection.
Resumo:
Amorphous SiO2 thin films were prepared on glass and silicon substrates by cost effective sol-gel method. Tetra ethyl ortho silicate (TEOS) was used as the precursor material, ethanol as solvent and concentrated HCl as a catalyst. The films were characterized at different annealing temperatures. The optical transmittance was slightly increased with increase of annealing temperature. The refractive index was found to be 1.484 at 550 nm. The formation of SiO2 film was analyzed from FT-IR spectra. The MOS capacitors were designed using silicon (1 0 0) substrates. The current-voltage (I-V), capacitance-voltage (C-V) and dissipation-voltage (D-V) measurements were taken for all the annealed films deposited on Si (1 0 0). The variation of current density, resistivity and dielectric constant of SiO2 films with different annealing temperatures was investigated and discussed for its usage in applications like MOS capacitor. The results revealed the decrease of dielectric constant and increase of resistivity of SiO2 films with increasing annealing temperature. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The absorption and emission spectra of two dyes namely 6MAMC and 7MAMC have been recorded at room temperature in solvents of different polarities. The ground-state dipole moments (mu(g)) of these two were determined experimentally by Guggenheim method and were compared with theoretical values obtained using quantum chemical method. The exited state (mu(e))dipole moments were estimated from Lippert's, Bakhshiev's and Chamma-Viallet's equations by using the variation of the Stokes shift with the solvent dielectric constant and refractive index. The ground and excited-state dipole moments were calculated by means of the solvatochromic shift method and also the excited-state dipole moments are determined in combination with ground-state dipole moments. It was observed that dipole moments of excited state were higher than those of the ground state, indicating a substantial redistribution of the pi-electron densities in a more polar excited state for these two dyes. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
MEMS systems are technologically developed from integrated circuit industry to create miniature sensors and actuators. Originally these semiconductor processes and materials were used to build electrical and mechanical systems, but expanded to include biological, optical fluidic magnetic and other systems 12]. Here a novel approach is suggested where in two different fields are integrated via moems, micro fluidics and ring resonators. It is well known at any preliminary stage of disease onset, many physiological changes occur in the body fluids like saliva, blood, urine etc. The drawback till now was that current calibrations are not sensitive enough to detect the minor physiological changes. This is overcome using optical detector techniques 1]. The basic concepts of ring resonators, with slight variations can be used for optical detection of these minute disease markers. A well known fact of ring resonators is that a change in refractive index will trigger a shift in the resonant wavelength 5]. The trigger for the wavelength shift in the case discussed will be the presence of disease agents. To trap the disease agents specific antibody has to be used (e. g. BSA).
Resumo:
Fiber bragg grating (FBG) sensors have been widely used for number of sensing applications like temperature, pressure, acousto-ultrasonic, static and dynamic strain, refractive index change measurements and so on. Present work demonstrates the use of FBG sensors in in-situ measurement of vacuum process with simultaneous leak detection capability. Experiments were conducted in a bell jar vacuum chamber facilitated with conventional Pirani gauge for vacuum measurement. Three different experiments have been conducted to validate the performance of FBG sensor in monitoring vacuum creating process and air bleeding. The preliminary results of FBG sensors in vacuum monitoring have been compared with that of commercial Pirani gauge sensor. This novel technique offers a simple alternative to conventional method for real time monitoring of evacuation process. Proposed FBG based vacuum sensor has potential applications in vacuum systems involving hazardous environment such as chemical and gas plants, automobile industries, aeronautical establishments and leak monitoring in process industries, where the electrical or MEMS based sensors are prone to explosion and corrosion.
Resumo:
We derive and analyze the statistics of reflection coefficient of light backscattered coherently from an amplifying and disordered optical medium modeled by a spatially random refractive index having a uniform imaginary part in one dimension. We find enhancement of reflected intensity owing to a synergy between wave confinement by Anderson localization and coherent amplification by the active medium. This is not the same as that due to enhanced optical path lengths expected from photon diffusion in the random active medium. Our study is relevant to the physical realizability of a mirrorless laser by photon confinement due to Anderson localization.
Resumo:
Silver selenide thin films of thickness between 80 nm and 160 nm were prepared by thermal evaporation technique at a high vacuum better than 2x10(-5)mbar on well cleaned glass substrates at a deposition rate of 0.2 nm/sec. Silver selenide thin films were polycrystalline with orthorhombic structure. Ellipsometric spectra of silver selenide thin films have been recorded in the wavelength range between 300 nm and 700 nm. Optical constants like refractive index, extinction coefficient, absorption coefficient, and optical band gap of silver selenide thin film have been calculated from the recorded spectra. The refractive index of silver selenide has been found to vary between 1.9 and 3.2 and the extinction coefficient varies from 0.5 to 1.6 with respect to their corresponding thickness of the films. Transmittance spectra of these films have been recorded in the wavelength range between 300 nm and 900 nm and its spectral data are analysed. The photoluminescence studies have been carried out on silver selenide thin films and the strong emission peak is found around 1.7 eV. The calculated optical band of thermally evaporated silver selenide thin films is found to be around 1.7 eV from their Ellipsometric, UV-Visible and Photoluminescence spectroscopic studies.
Resumo:
The variation of the linear electro-optic effect in (-)-2-(alpha-methylbenzylamino)-5-nitropyridine with the wavelength of the incident light at room temperature has been measured. The reduced half-wave voltages have been found to have the values 2.1, 2.8, and 6.0 kV at 488, 514.5, and 632.8 nm respectively and the corresponding values of the linear electro-optic coefficient have been evaluated.;The interpretation of the results in terms of the structures of the molecule and the crystal is discussed. The thermal variation of the birefringence has also been investigated and the coefficient for the temperature variation of the refractive index difference is found to have the value (d Delta n/dT)=9.3X10(-5) K-1.
Resumo:
Transparent BaNaB9O15 (BNBO), BaLiB9O15 (BLBO) and SrLiB9O15 (SLBO) glasses were fabricated via the conventional melt-quenching technique. X-ray diffraction (XRD) and Differential thermal analysis (DTA) studies carried out on the as-quenched glasses confirmed their amorphous and glassy nature, respectively. The optical properties for these as-quenched glasses were investigated. The refractive index, optical band gap. Urbach energy and Fermi energy were determined. The average electronic polarizability calculated from the refractive index expression. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Thin films of zirconia have been synthesized using reactive DC magnetron sputtering. It has been found that films with good optical constants, high refractive index (1.9 at 600 nm) and low extinction coefficient can be prepared al ambient temperatures. The optical constants and band gnp and hence the composition nle dependent on the deposition parameters such as target power, rate of deposition and oxygen background pressure. Thermal annealing of the films revealed that tile films showed optical and crystalline inhomogeneity and also large variations in optical constants.
Resumo:
A study of the linear electro?optic effect in single crystals of the organic compound, 4?nitro�4??methylbenzylidene aniline is reported. The reduced half?wave voltages have been found to have values 2.8, 1.3, and 1.1 kV at 632.8, 514.5, and 488.0 nm, respectively and the corresponding values of the largest linear electro?optic coefficient have been calculated. The thermal variation of the birefringence has also been investigated and the temperature variation of the refractive index difference is found to have the value, d?n/dT = 15.8 × 10?5 K?1.
Resumo:
Thin films of Bismuth Vanadate Bi2VO5.5 (BiV) have been deposited on amorphous quartz and polycrystalline silicon substrates by r.f. sputtering technique and characterised for their structural and optical properties. The os-deposited films at room temperature are found to be amorphous and transparent over the spectral range of 0.55 mu m to 12 mu m. Post-deposition annealing at 400 degrees C in air shows the formation of the BiV crystalline phase. The optical constants namely refractive index. extinction coefficient and optical bandgap of both amorphous and crystalline films have been determined. The refractive index of the as-deposited film is around 2.4 at 0.7 mu m and drops to 2.26 at 1.56 mu m. The optical bandgap of the material has been determined from the computed values of the absorption coefficients.