69 resultados para pulsed rapid thermal annealing (PRTA)
Resumo:
The effect of deposition of Al +Al2O3 on MRI 153 M Mg alloy processed using a pulsed Nd:YAG laser is presented in this study. A composite coating with metallurgical joint to the substrate was formed. The microstructure and phase constituents were characterized and correlated with the thermal predictions. The laser scan speed had an effect on the average melt depth and the amount of retained and/or reconstituted alumina in the final coating. The coating consisted of alumina particles and highly refined dendrites formed due to the extremely high cooling rates (of the order of 10(8) K/s). The microhardness of the coating was higher and several fold improvement of wear resistance compared to the substrate was observed for the coatings. These microstructural features and physical properties were correlated with the effects predicted by a thermal model.
Resumo:
Nanocrystalline zinc ferrite (ZFO) has been synthesized from metal acetylacetonates by microwave irradiation for 5 min in the presence of a surfactant. The as-prepared material is ZFO and has been subjected in air to conventional furnace annealing and to rapid annealing at different temperatures. Both annealing protocols lead to well-crystallized ZFO, with crystallite sizes in the range similar to 8-20 nm, which is ferrimagnetic, even at room temperature, with magnetization attaining saturation. While the magnetization M(S) of conventionally annealed ZFO varies with crystallite size in the expected manner, rapid annealing leads to high M(S) even when the crystallite size is relatively large. The coercivity is greater in the conventionally annealed ZFO. Thermal and magnetic measurements suggest that the inhomogeneous site cationic distribution within each crystallite caused by rapid annealing can be used to tailor the magnetic behaviour of nanocrystalline ferrites.
Resumo:
We report a novel, rapid, and low-temperature method for the synthesis of undoped and Eu-doped GdOOH spherical hierarchical structures, without using any structure-directing agents, through the microwave irradiation route. The as-prepared product consists of nearly monodisperse microspheres measuring about 1.3 mu m in diameter. Electron microscopy reveals that each microsphere is an assembly of two-dimensional nanoflakes (about 30 nm thin) which, in turn, result from the assembly of crystallites measuring about 9 nm in diameter. Thus, a three-level hierarchy can be seen in the formation of the GdOOH microspheres: from nanoparticles to 2D nanoflakes to 3D spherical structures. When doped with Eu3+ ions, the GdOOH microspheres show a strong red emission, making them promising candidates as phosphors. Finally, thermal conversion at modest temperatures leads to the formation of corresponding oxide structures with enhanced luminescence, while retaining the spherical morphology of their oxyhydroxide precursor.
Resumo:
Hollow nanomaterials have attracted a lot of interest by virtue of their wide range of applications that arise primarily due to their unique architecture. A common strategy to synthesize hollow nanomaterials is by nucleation of the shell material over a preformed core and subsequent dissolution of the core in the second step. Herein an ultrafast, microwave route has been demonstrated, to synthesize PdO nanotubes in a single step using ZnO as a sacrificial template. The mechanism of the nanotube formation has been investigated in detail using control experiments. By tuning the starting ratio of PdCl2 : ZnO, hollow to hybrid PdO nanostructures could be obtained using the same method. Conversion of the PdO to Pd nanotubes has been shown by simple NaBH4 treatment. The thermal stability of the PdO nanotubes has been studied. The insights presented here are general and applicable for the synthesis of hybrids/hollow structures in other systems as well.
Resumo:
An interesting, periodic appearance of a new peak has been observed in the reflected spectrum of a Fiber Bragg Grating (FBG) inscribed in a germanosilicate fiber during thermal treatment. The new peak occurs on the longer wavelength side of the spectrum during heating and on the shorter wavelength side during cooling, following an identical reverse dynamics. Comparison with a commercial grating with 99.9% reflectivity shows a similar decay dynamics. It is proposed that the distortion due to simultaneous erasure and thermal expansion of the index modulation profile may be responsible for the observed anomaly. The reported results help us in understanding the thermal behavior of FBGs and provide additional insights into the mechanisms responsible for the photosensitivity in germanosilicate fibers.
Resumo:
Polycrystalline films of SrBi2Nb2O9 were grown using pulsed-laser ablation. The ferroelectric properties were achieved by low-temperature deposition followed by a subsequent annealing process. The lower switching voltage was obtained by lowering the thickness, which did not affect the insulating nature of the films. The hysteresis results showed an excellent square-shaped loop with results (P-r=6 mu C/cm(2), E-c=100 kV/cm) in good agreement with earlier reports. The films also exhibited a dielectric constant of 250 and a dissipation factor of 0.02. The transport studies indicated an ohmic behavior, while higher voltages induced a bulk space charge.
Resumo:
Antiferroelectric lead zirconate (PZ) thin films were deposited by pulsed laser ablation on platinum-coated silicon substrates. Films showed a polycrystalline pervoskite structure upon annealing at 650 degrees C for 5-10 min. Dielectric properties were investigated as a function of temperature and frequency. The dielectric constant of PZ films was 220 at 100 kHz with a dissipation factor of 0.03. The electric field induced transformation from the antiferroelectric phase to the ferroelectric phase was observed through the polarization change, using a Sawyer-Tower circuit. The maximum polarization value obtained was 40 mu C/cm(2). The average fields to excite the ferroelectric state, and to reverse to the antiferroelectric state were 71 and 140 kV/cm, respectively. The field induced switching was also observed through double maxima in capacitance-voltage characteristics. Leakage current was studied in terms of current versus time and current versus voltage measurements. A leakage current density of 5x10(-7) A/cm(2) at 3 V, for a film of 0.7 mu m thickness, was noted at room temperature. The trap mechanism was investigated in detail in lead zirconate thin films based upon a space charge limited conduction mechanism. The films showed a backward switching time of less than 90 ns at room temperature.
Resumo:
A new method is suggested where the thermal activation energy is measured directly and not as a slope of an Arrhenius plot. The sample temperature T is allowed to fluctuate about a temperature T0. The reverse-biased sample diode is repeatedly pulsed towards zero bias and the transient capacitance C1 at time t1 is measured The activation energy is obtained by monitoring the fluctuations in C1 and T. The method has been used to measure the activation energy of the gold acceptor level in silicon.
Resumo:
Thermal polymerization of acrylamide has been followed by the DSC technique, and the activation energy (E) values at different stages of the fraction polymerized (a) have been determined from the exotherm of the thermograms obtained. The trend of variation of E with agr shows that E remains constant up to agr = 0.5 and decreases with a further increase in agr. A close look at the composite nature of the exotherms, agr-t, and agr-T curves shows that the polymerization of acrylamide involves two processes. The first process is the formation of linear polyacrylamide and the second is the simultaneous cross-linking of the linear chains together with the formation of linear polyacrylamide. Experiments such as NH3 detection by differential thermal analysis techniques and annealing studies have been made to shed further light on the polymerization process.
Resumo:
Thin films of Cd1−xMnxS (0<=x<=0.5) were deposited on glass substrates by thermal evaporation. All the films were deposited at 300 K and annealed at 373, 473, and 573 K for 1 h in a high vacuum in the range 10−4 Pa. The as-deposited and the annealed films were characterized for composition, structure, and microstructure by using energy-dispersive X-ray, X-ray diffraction, scanning electron microscopy, and atomic force microscopy (AFM). The electrical properties were studied by Hall effect measurement. Electrical conductivity was studied in the temperature range 190–450 K. AFM studies showed that all the films were in nanocrystalline form with grain size varying in the range between 36 and 82 nm. Grain size studies showed a definite increase with annealing temperature. All the films exhibited wurtzite structure of the host material. The lattice parameter varied linearly with composition, following Vegard's law in the entire composition range. Grain size, electrical conductivity, Hall mobility, carrier concentration, and activation energy varied, exhibiting either maxima or minima at x=0.3.
Resumo:
A hot rolled two-phase Ti-22Al-25Nb (at.%) alloy containing the orthorhombic (O) and beta(B2) phases was subjected to thermal treatment under different conditions. The experiment was aimed to examine the recrystallization response of the beta(B2) phase (static and dynamic) to microstructure and crystallographic texture evolution using scanning electron microscopy coupled with electron backscattered diffraction (SEM-EBSD). Specimens rolled in the two-phase (O + beta(B2)) region consisted of highly deformed beta(B2) grains. The texture was close to that of the typical bcc deformation texture with a few additional texture components. A subsequent heat treatment of these rolled specimens in single beta(B2) phase region was characterized by static recrystallized beta(B2) grains with the final texture partly inherited from as-rolled material. In contrast, specimens rolled in the single beta(B2) region produced beta(B2) grains with the texture similar to that of completely dynamic recrystallized one. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Ex-situ grown thin films of SrBi2Nb2O9 (SBN) were deposited on platinum substrates using laser ablation technique. A low substrate-temperature-processing route was chosen to avoid any diffusion of bismuth into the Pt electrode. It was observed that the as grown films showed an oriented growth along the 'c'-axis (with zero spontaneous polarization). The as grown films were subsequently annealed to enhance crystallization. Upon annealing, these films transformed into a polycrystalline structure, and exhibited excellent ferroelectric properties. The switching was made to be possible by lowering the thickness without losing the electrically insulating behavior of the films. The hysteresis results showed an excellent square-shaped loop with results (P-r = 4 muC/cm(2) E-c = 90 kV/cm) in good agreement with the earlier reports. The films also exhibited a dielectric constant of 190 and a dissipation factor of 0.02, which showed dispersion at low frequencies. The frequency dispersion was found to obey Jonscher's universal power law relation, and was attributed to the ionic charge hopping process according to earlier reports. The de transport studies indicated an ohmic behavior in the low voltage region, while higher voltages induced a bulk space charge and resulted in non-linear current-voltage dependence.
Resumo:
As-deposited high Tc superconducting Y1Ba2Cu3O7−x films with zero resistance temperatures of similar, equals89 K and critical current densities about 0.7×106 A/cm2 at 77 K have been reproducibly fabricated at a substrate holder temperature at 650°C, using pulsed laser deposition, without post-annealing. One key to these results is the injection of gaseous oxygen into laser produced plume just in front of the target. In this way, the correct amount of oxygen is incorporated into the as-grown film so that post-deposition treatment becomes unnecessary. Axial ion channeling in these as-deposit high Tc superconducting films on (100) SrTiO3 and X-ray photoelectron spectroscopy (XPS) on the film surfaces were performed. Angular yield profile near the film surface for Ba, and the surface peak intensity were measured using 3 MeV He ions. For channeling normal to the substrate a minimum yield of 7%, compared to similar, equals3% for single crystals, was obtained. The results of ion channeling and XPS studies indicate that the as-deposited films have good crystallinity as well as toichiometry to within similar, equals1 nm of the film surface. The in-situ growth of such high Tc and Jc films is an important step in the use of the laser deposition technique to fabricate multilayer structures and the surface perfection is of importance in tunneling devices such as Josephson junctions.
Resumo:
Ni80Fe20 thin films with high orientation were grown on Si(1 0 0) using pulsed laser ablation. The anisotropic magnetoresistance (AMR) and the planar Hall measurements show a 2.5% resistance anisotropy and a 45% planar Hall voltage change for magnetic field sweep of 10 Oe. The planar Hall sensitivity dR/dH was found to be 900 Omega T-1 compared with a previously reported maximum of 340 Omega T-1 in the same system.Also these films are found to withstand repeated thermal cycling up to 110 degrees C and the Hall sensitivity remains constant within this temperature range. This combination of properties makes the system highly suitable for low magnetic field sensors, particularly in geomagnetic and biosensor applications. To elucidate this, we have demonstrated that these sensors are sensitive to Earth's magnetic field. These results are compared with the sputter deposited films which have a very low AMR and planar Hall voltage change as compared with the films grown by PLD. The possible reasons for these contrasting characteristics are also discussed.