309 resultados para generalized lambda distribution
Resumo:
We present an analysis of the breakdown of the most probable approximation to the Mayer cluster size distribution for clusters of size comparable to the size of the system. This failure is illustrated by considering an ideal Bose gas for which exact volume dependent reducible cluster integrals are available.
Resumo:
Magic-angle-spinning NMR has been used to study Si---O---Si bond-angle distributions associated with various structural elements, Qn, present in lithium silicate glasses of different compositions. It is shown that glasses contain a plurality of structural elements with a broad distribution of Si---O---Si bond angles, and that the width of the distribution is characteristic of a particular Qn species
Resumo:
An applicative language based on the LAMBDA-Calculus is presented. The language, SLIPS (Small Language for Instruction Purposes), is described using the LAMBDA-Calculus as a metalanguage. A call-by-need mechanism of function invocation eliminates the drawbacks of both call-by-name and call-by-value. The system has been implemented in PASCAL.
Resumo:
A high level of extracellular beta-lactamase activity was detected in cultures ofMycobacterium smegmatis SN2. The extracellular distribution of the enzyme varied with growth conditions such as additional carbon source and pH of the medium. Addition of chloramphenicol tothe culture inhibited the increase in the extracellular beta-lactamase activity. Cell wall damage or autolysis may be responsible for the extracellular beta-lactamase activity.
Resumo:
We study the probability distribution of the angle by which the tangent to the trajectory rotates in the course of a plane random walk. It is shown that the determination of this distribution function can be reduced to an integral equation, which can be rigorously transformed into a differential equation of Hill's type. We derive the asymptotic distribution for very long walks.
Resumo:
It is shown that for continuum percolation with overlapping discs having a distribution of radii, the net areal density of discs at percolation threshold depends non-trivially on the distribution, and is not bounded by any finite constant. Results of a Monte Carlo simulation supporting the argument are presented.
Resumo:
A recent theoretical model developed by Imparato et al. Phys of the experimentally measured heat and work effects produced by the thermal fluctuations of single micron-sized polystyrene beads in stationary and moving optical traps has proved to be quite successful in rationalizing the observed experimental data. The model, based on the overdamped Brownian dynamics of a particle in a harmonic potential that moves at a constant speed under a time-dependent force, is used to obtain an approximate expression for the distribution of the heat dissipated by the particle at long times. In this paper, we generalize the above model to consider particle dynamics in the presence of colored noise, without passing to the overdamped limit, as a way of modeling experimental situations in which the fluctuations of the medium exhibit long-lived temporal correlations, of the kind characteristic of polymeric solutions, for instance, or of similar viscoelastic fluids. Although we have not been able to find an expression for the heat distribution itself, we do obtain exact expressions for its mean and variance, both for the static and for the moving trap cases. These moments are valid for arbitrary times and they also hold in the inertial regime, but they reduce exactly to the results of Imparato et al. in appropriate limits. DOI: 10.1103/PhysRevE.80.011118 PACS.
Resumo:
A generalized Gierer-Meinhardt model has been used to account for the transplantation experiments in Hydra. In this model, a cross inhibition between the two organizing centres (namely, head and foot) are assumed to be the only mode of interaction in setting up a stable morphogen distribution for the pattern formation in Hydra.
Resumo:
An existence theorem is obtained for a generalized Hammerstein type equation
Resumo:
Generalizations of H–J theory have been discussed before in the literature. The present approach differs from others in that it employs geometrical ideas on phase space and classical transformation theory to derive the basic equations. The relation between constants of motion and symmetries of the generalized H–J equations is then clarified. Journal of Mathematical Physics is copyrighted by The American Institute of Physics.
Resumo:
Formal charge distributions in, and the electric dipole moments of, a few simple organogermanium compounds have been evaluated by the method of R. P. Smith et al. [J. Amer. Chem. Soc., 73(1951) 2263]. The difference between the experimental and calculated moments in the case of alkylhalogermanes is explained in terms of the pπ—dπ back bonding effect outweighing the electron releasing effect. In unsaturated compounds, the differences are attributed to possible mesmeric effects involving the expansion of the germanium valence shell.
Resumo:
The solitary-wavelike solution of the generalized Korteweg-de Vries equation with mixed nonlinearity is obtained. Two asymptotic cases of the solution have been discussed and solitary wave solutions have been derived. ©1974 American Institute of Physics.
Resumo:
This paper discusses the consistent regularization property of the generalized α method when applied as an integrator to an initial value high index and singular differential-algebraic equation model of a multibody system. The regularization comes from within the discretization itself and the discretization remains consistent over the range of values the regularization parameter may take. The regularization involves increase of the smallest singular values of the ill-conditioned Jacobian of the discretization and is different from Baumgarte and similar techniques which tend to be inconsistent for poor choice of regularization parameter. This regularization also helps where pre-conditioning the Jacobian by scaling is of limited effect, for example, when the scleronomic constraints contain multiple closed loops or singular configuration or when high index path constraints are present. The feed-forward control in Kane's equation models is additionally considered in the numerical examples to illustrate the effect of regularization. The discretization presented in this work is adopted to the first order DAE system (unlike the original method which is intended for second order systems) for its A-stability and same order of accuracy for positions and velocities.