287 resultados para cyclopropane derivative
Resumo:
In this paper we discuss a novel procedure for constructing clusters of bound particles in the case of a quantum integrable derivative delta-function Bose gas in one dimension. It is shown that clusters of bound particles can be constructed for this Bose gas for some special values of the coupling constant, by taking the quasi-momenta associated with the corresponding Bethe state to be equidistant points on a single circle in the complex momentum plane. We also establish a connection between these special values of the coupling constant and some fractions belonging to the Farey sequences in number theory. This connection leads to a classification of the clusters of bound particles associated with the derivative delta-function Bose gas and allows us to study various properties of these clusters like their size and their stability under the variation of the coupling constant. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
We consider holographic entanglement entropy in higher derivative gravity theories. Recently Lewkowycz and Maldacena 1] have provided a method to derive the equations for the entangling surface from first principles. We use this method to compute the entangling surface in four derivative gravity. Certain interesting differences compared to the two derivative case are pointed out. For Gauss-Bonnet gravity, we show that in the regime where this method is applicable, the resulting equations coincide with proposals in the literature as well as with what follows from considerations of the stress tensor on the entangling surface. Finally we demonstrate that the area functional in Gauss-Bonnet holography arises as a counterterm needed to make the Euclidean action free of power law divergences.
Resumo:
In this article, we present the discovery of a metallo-organogel derived from a Tb3+ salt and sodium deoxycholate (NaDCh) in methanol. The gel was made luminescent through sensitization of Tb3+ by doping with 2,3-dihydroxynaphthalene (DHN) in micromolar concentrations. Rheological measurements of the mechanical properties of the organogel confirmed the characteristics of a true gel. Significant quenching of Tb3+ luminescence was observed in the deoxycholate gel matrix by 2,4,7-trinitrofluorenone (TNF), but not by several other polynitro aromatics. Microscopic studies (AFM, TEM and SEM) revealed a highly entangled fibrous network. The xerogels retained luminescent properties suggesting the possibility for application in coatings, etc.
Resumo:
Reaction of the salicylhydrazone of 2-hydroxy-1-naphthaldehyde (H2L1), anthranylhydrazone of 2hydroxy-l-naphthaldehyde (H2L2), benzoylhydrazone of 2-hydroxy-1-acetonaphthone (H2L3) and anthranylhydrazone of 2-hydroxy-1-acetonaphthone (H2L4; general abbreviation H2L) with MoO2(acac)21 afforded a series of 5- and 6- coordinate Mo(VI) complexes of the type MoO2L1-2(ROH)] where R = C2H5 (1) and CH3 (2)], and MoO2L3-4] (3 and 4). The substrate binding capacity of 1 has been demonstrated by the formation of one mononuclear mixed-ligand dioxidomolybdenum complex MoO2L1(Q)] (where Q= gamma-picoline (la)). Molecular structure of all the complexes (I, la, 2,3 and 4) is determined by X-ray crystallography, demonstrating the dibasic tridentate behavior of ligands. All the complexes show two irreversible reductive responses within the potential window -0.73 to -1.08 V, due to Movl/Mov and Mov/Mow processes. Catalytic potential of these complexes was tested for the oxidation of benzoin using 30% aqueous H2O2 as an oxidant in methanol. At least four reaction products, benzoic acid, benzaldehydedimethylacetal, methyl benzoate and benzil were obtained with the 95-99% conversion under optimized reaction conditions. Oxidative bromination of salicylaldehyde, a functional mimic of haloperoxidases, in aqueous 1-1202/KEr in the presence of HC1O4 at room temperature has also been carried out successfully. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
The dibenzyl derivative of poly(3,4-propylenedioxythiophene) (PProDOT-Bz(2)) thin film is deposited onto ITO-coated glass substrate by electropolymerization technique. The electropolymerization of ProDOT-Bz(2) is carried out by a three-electrode electrochemical cell. The cyclic voltammogram shows the redox properties of electrochemically prepared films deposited at different scan rates. The thin films prepared were characterized for its morphological properties to study the homogeniety. Classic six-layer structure of PProDOT-Bz(2) electrochromic device using this material was fabricated and reported for the first and its characterizations such as spectroelectrochemical, switching kinetics, and chronoamperometric studies are performed. The color contrast of the thin film and the device achieved are 64 and 40%, respectively, at lambda(max) (628 nm). The switching time is recorded and the observed values are 5 s from the coloring state to the bleaching state and vice versa. The chronoamperometry shows that the device performed up to 400 cycles, and it is capable of working up to 35 cycles without any degradation. (C) 2014 Wiley Periodicals, Inc.
Resumo:
The N-alkyl derivative of 1,9-pyrazoloanthrone has been synthesized, characterized and evaluated as a potent sensor for picric acid.
Resumo:
In this paper based on the basic principles of gauge/gravity duality we compute the hall viscosity to entropy ratio in the presence of various higher derivative corrections to the dual gravitational description embedded in an asymptotically AdS(4) space time. As the first step of our analysis, considering the back reaction we impose higher derivative corrections to the abelian gauge sector of the theory where we notice that the ratio indeed gets corrected at the leading order in the coupling. Considering the probe limit as a special case we compute this leading order correction over the fixed background of the charged black brane solution. Finally we consider higher derivative (R-2) correction to the gravity sector of the theory where we notice that the above ratio might get corrected at the sixth derivative level.
Resumo:
In arXiv:1310.5713 1] and arXiv:1310.6659 2] a formula was proposed as the entanglement entropy functional for a general higher-derivative theory of gravity, whose lagrangian consists of terms containing contractions of the Riemann tensor. In this paper, we carry out some tests of this proposal. First, we find the surface equation of motion for general four-derivative gravity theory by minimizing the holographic entanglement entropy functional resulting from this proposed formula. Then we calculate the surface equation for the same theory using the generalized gravitational entropy method of arXiv:1304.4926 3]. We find that the two do not match in their entirety. We also construct the holographic entropy functional for quasi-topological gravity, which is a six-derivative gravity theory. We find that this functional gives the correct universal terms. However, as in the R-2 case, the generalized gravitational entropy method applied to this theory does not give exactly the surface equation of motion coming from minimizing the entropy functional.
Resumo:
A newly synthesized and structurally characterized quinazoline derivative (L) has been shown to act as a quick-response chemosensor for Al3+ with a high selectivity over other metal ions in water-DMSO. In the presence of Al3+, L shows a red-shifted ratiometric enhancement in fluorescence as a result of internal charge transfer and chelation-enhanced fluorescence through the inhibition of a photo-induced electron transfer mechanism. This probe detects Al3+ at concentrations as low as 1.48 nM in 100 mM HEPES buffer (DMSO-water, 1 : 9 v/v) at biological pH with a very short response time (15-20 s). L was applied to biological imaging to validate its utility as a fluorescent probe for monitoring Al3+ ions in living cells, illustrating its value in practical environmental and biological systems.
Resumo:
A new desodiated derivative compound, Na0.89Fe1.8(SO4)(3), was prepared by the chemical oxidation of alluaudite Na2.4Fe1.8(SO4)(3) Phase using NOBF4 as oxidant. The structure and valency of Fe were characterized by X-ray diffraction (XRD) and Fe-57 Mossbauer spectroscopy. Intercalation behavior of lithium ions in the structure of Na0.89Fe1.8(SO4)(3) was gauged by electrochemical analyses and ex-situ X-ray diffraction. A high capacity of 110 mAh g(-1) at 0.1 C was obtained with a good rate kinetics within a range of 0.1-10 C(1 C = 118 mAh g-1) involving a high Fe3+/Fe2+ redox potential of 3.75 V (vs. Li/Li+). These results confirmed that the Na2.4-delta Fe1.8(SO4)(3) framework was stable even after oxidation and forms a new competitive cathode for the reversible intercalation of lithium ions. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
In the present paper, based on the principles of gauge/gravity duality we analytically compute the shear viscosity to entropy (eta/s) ratio corresponding to the super fluid phase in Einstein Gauss-Bonnet gravity. From our analysis we note that the ratio indeed receives a finite temperature correction below certain critical temperature (T < T-c). This proves the non universality of eta/s ratio in higher derivative theories of gravity. We also compute the upper bound for the Gauss-Bonnet coupling (lambda) corresponding to the symmetry broken phase and note that the upper bound on the coupling does not seem to change as long as we are close to the critical point of the phase diagram. However the corresponding lower bound of the eta/s ratio seems to get modified due to the finite temperature effects.
Resumo:
A newly designed rhodamine B anisaldehyde hydrazone exhibits Al3+-ion-induced cis (L) to trans (L) conformational isomerization with respect to the xanthene moiety through a rotation about a N-N bond; the isomerization is indicated by a detectable naked-eye color change and a turn-on red fluorescence in 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer (EtOH/Water 1:9 v/v; pH 7.4) at 25 degrees C. In support of this observation, detailed spectroscopic and physicochemical studies along with density function theory (DFT) calculations have been performed. This cis-to-trans conformational isomerization is due to Al3+ ion coordination, which induces this visual color change and the turn-on fluorescence response. To strengthen our knowledge of the conformational isomerization, detailed structural characterizations of the cis and trans isomers in the solid state were performed by single-crystal X-ray diffraction. To the best of our knowledge, this is the first structural report of both cis and trans conformational isomers for this family of compounds. Moreover, this noncytotoxic probe could be used to image the accumulation of Al3+ ions in HeLa and MCF-7 cell lines.
Resumo:
Accumulating evidence suggests that deposition of neurotoxic a-synuclein aggregates in the brain during the development of neurodegenerative diseases like Parkinson's disease can be curbed by anti-aggregation strategies that either disrupt or eliminate toxic aggregates. Curcumin, a dietary polyphenol exhibits anti-amyloid activity but the use of this polyphenol is limited owing to its instability. As chemical modifications in curcumin confiscate this limitation, such efforts are intensively performed to discover molecules with similar but enhanced stability and superior properties. This study focuses on the inhibitory effect of two stable analogs of curcumin viz. curcumin pyrazole and curcumin isoxazole and their derivatives against a-synuclein aggregation, fibrillization and toxicity. Employing biochemical, biophysical and cell based assays we discovered that curcumin pyrazole (3) and its derivative N-(3-Nitrophenylpyrazole) curcumin (15) exhibit remarkable potency in not only arresting fibrillization and disrupting preformed fibrils but also preventing formation of A11 conformation in the protein that imparts toxic effects. Compounds 3 and 15 also decreased neurotoxicity associated with fast aggregating A53T mutant form of a-synuclein. These two analogues of curcumin described here may therefore be useful therapeutic inhibitors for the treatment of a-synuclein amyloidosis and toxicity in Parkinson's disease and other synucleinopathies.
Resumo:
Lightweight and flexible electromagnetic shielding materials were designed by selectively localizing multiwall carbon nanotubes (MWNTs) anchored magnetic nanoparticles in melt mixed co-continuous blends of polyvinylidene fluoride (PVDF) and poly(styrene-co-acrylonitrile) (SAN). In order to facilitate better dispersion, the MWNTs were modified using pyrenebutyric acid (PBA) via pi-pi stacking. While one of the two-targeted properties, i.e., high electrical conductivity, was achieved by PBA modified MWNTs, high magnetic loss was accomplished by introducing nickel (NF) or cobalt ferrites (CF). Moreover, the attenuation by absorption can be tuned either by using NF (58% absorption) or CF (64% absorption) in combination with PBA-MWNTs. More interestingly, when CF was anchored on to MWNTs via the pyrene derivative, the minimum reflection loss attained was -55 dB in the Ku band (12-18 GHz) frequency and with a large bandwidth. In addition, the EM waves were blocked mostly by absorption (70%). This study opens new avenues in designing flexible and lightweight microwave absorbers.
Resumo:
In the present work, electrospraying of an organic molecule is carried out using various solvents, obtaining fibril structures along with a range of distinct morphologies. Solvent characteristics play a major role in determining the morphology of the organic material. A thiophene derivative (7,9-di(thiophen-2-yl)-8H-cyclopentaa]acenaphthylen-8-one) (DTCPA) of donor-acceptor-donor (DAD) architecture is used to study this solvent effect. Seven solvents with decreasing vapour pressure are selected for experiments. Electrospraying is conducted at a solution concentration of 1.5 wt% and a constant applied voltage of 15 kV. Gradual transformation in morphology of the electrospun product from spiked-spheres to only spikes is observed. A mechanism describing this transformation is proposed based on electron micrograph analysis and XRD analysis. These data indicate that the morphological change is due to the synergistic effect of both vapour pressure and dielectric constant of the solvents. Through a reasonable control of the crystallite size and morphology along with the proposal of the transformation mechanism, this study elucidates electrospraying as a prospective method for designing architectures in organic electronics.