102 resultados para convective strom
Resumo:
The equation of motion for a toroidal flux ring in a stellar convective envelope is derived, and the equilibrium of such a ring is considered. Necessary conditions for the stability of toroidal flux rings are derived, and results of stability calculations for a particular model of the meridional flow are presented. The motions of the flux rings when the rings are far from their equilibrium position or when equilibrium does not exist are considered. The results confirm the linear stability analysis, and show that in the absence of stable equilibrium, the rings move toward the solar surface along a trajectory which is parallel to the rotation axis. It is expected that viscosity will tend to reduce the rotational velocity difference between the flux ring and its surroundings, thus reducing the Coriolis force and altering the equilibrium. The storage time of toroidal flux rings is estimated, and some implications for the sun are discussed.
Resumo:
Characteristics of the process of entrainment in plane mixing layers, and the changes with compressibility and heat release, were studied using temporal DNS with simultaneous fluid packet tracking. Convective Mach numbers of the simulations are 0.15, 0.7 and 1.1. The Reynolds number is quite high (between 11 000 and 37 000 based on layer width and velocity difference), and is above the mixing transition. The study agrees with recent findings in round jets: first, engulfed fluid volume and its growth rate are both very small compared with the volume of the turbulent region and its growth rate, respectively. Secondly, most often, the process occurs close to the turbulent-nonturbulent boundaries. A new finding is that both compressibility and heat release retard the entrainment process so that it takes an O(1) time for vorticity or scalar levels to grow even after growth has been initiated. This delay is manifested as the fall in mixing layer growth rates as compressibility and heat release levels increase.
Resumo:
We present an analysis of the interfacial tension model for the movement of the catalytically driven nanorod. The model considers the convective reaction-diffusion equation for the production and diffusion of oxygen around the bimetallic nanorod. We solve the equation and find the concentration difference, which drives the nanorod. We use our expression to calculate the force on the nanorod and find that the result is within 20% of the results found earlier [ W. Paxton et al., J. Am. Chem. Soc. 128, 14881 (2006) ] by an approximate method. Unlike the earlier results, our results are valid from short to long lengths of the nanorod.
Resumo:
This paper is concerned with the experimental and modeling studies on the smoldering rates of incense sticks as a function of ambient oxygen fraction in air, the flow velocity and size. The experimental results are obtained both for forward and reverse smolder conditions. The results are explained on the basis of surface combustion due to diffusion of oxygen to the surface by both free and forced convection supporting the heat transfer into the solid by conduction, into the stream by convection and the radiant heat transfer from the surface. The heat release at the surface is controlled by the convective transport of the oxidizer to the surface. To obtain the diffusion rates particularly for the reverse smolder, CFD calculations of fluid flow with along with a passive scalar are needed; these calculations have been made both for forward and reverse smolder. The interesting aspect of the CFD calculations is that while the Nusselt umber for forward smolder shows a clear root( Re-u) dependence ( Re-u = Flow Reynolds Number), the result for reverse smolder shows a peak in the variation with Reynolds number with the values lower than for forward smolder and unsteadiness in the flow beyond a certain flow rate. The results of flow behavior and Nusselt number are used in a simple model for the heat transfer at the smoldering surface to obtain the dependence of the smoldering rate on the diameter of the incense stick, the flow rate of air and the oxygen fraction. The results are presented in terms of a correlation for the non-dimensional smoldering rate with radiant flux from the surface and heat generation rate at the surface. The correlations appear reasonable for both forward and reverse smolder cases.
Resumo:
Continuous CO2 laser welding of an Fe-Cu dissimilar couple in a butt-weld geometry at different process conditions is studied. The process conditions are varied to identify and characterize the microstructural features that are independent of the welding mode. The study presents a characterization of the microstructure and mechanical properties of the welds. Detailed microstructural analysis of the weld/base-metal interface shows features that are different on the two sides of the weld. The iron side can grow into the weld with a local change in length scale, whereas the interface on the copper side indicates a barrier to growth. The interface is jagged, and a banded microstructure consisting of iron-rich layers could be observed next to the weld/Cu interface. The observations suggest that solidification initiates inside the melt, where iron and copper are mixed due to convective flow. The transmission electron microscopy (TEM) of the weld region also indicates the occasional presence of droplets of iron and copper. The microstructural observations are rationalized using arguments drawn from a thermodynamic analysis of the Fe-Cu system.
Resumo:
We have studied in this paper the propagation of an isothermal shock in the radiative envelopes of the Bosman-Crespin model for a hot star and Boury’s model for a giant star. A spherically symmetric disturbance is supposed to be originated at or outside the surface of the convective core. We have used Whitham’s rule to study the variation in the shock strength and the shock velocity after modifying it for inclusion of pressure, energy and flux of radiation. We find the shock increases in strength as it propagates through the envelopes of decreasing density, pressure and temperature. The velocity of the shock decreases for very weak initial shock strengths, for intermediate initial shock strength it first decreases and then increases, while for large initial shock strength, it always increases. This aspect of the problem throws some light on the stability of the models under consideration.
Resumo:
Aerodynamic forces and fore-body convective surface heat transfer rates over a 60 degrees apex-angle blunt cone have been simultaneously measured at a nominal Mach number of 5.75 in the hypersonic shock tunnel HST2. An aluminum model incorporating a three-component accelerometer-based balance system for measuring the aerodynamic forces and an array of platinum thin-film gauges deposited on thermally insulating backing material flush mounted on the model surface is used for convective surface heat transfer measurement in the investigations. The measured value of the drag coefficient varies by about +/-6% from the theoretically estimated value based on the modified Newtonian theory, while the axi-symmetric Navier-Stokes computations overpredict the drag coefficient by about 9%. The normalized values of measured heat transfer rates at 0 degrees angle of attack are about 11% higher than the theoretically estimated values. The aerodynamic and the heat transfer data presented here are very valuable for the validation of CFD codes used for the numerical computation of How fields around hypersonic vehicles.
Resumo:
Current-voltage (I–U) characteristics of MOS structures on polycrystalline silicon are investigated. A model based on the carrier transport through the traps in the oxide is described to explain the I–U characteristics.Es werden Strom-Spannungs(I–U)-Charakteristiken von MOS-Strukturen auf polykristallinem Silizium untersucht. Ein Modell zur Erklärung der I–U-Charakteristiken wird beschrieben, das auf dem Ladungstransport über Oxidtraps beruht.
Resumo:
An analysis is performed to study the flow and heat transfer characteristics for the case of laminar mixed convection along a vertical circular cone. A mixed-convection parameter is introduced in the formulation of the problem such that smooth transition from one convective limit to the other is possible. The transformed conservation equations of the nonsimilar boundary layers are solved by an efficient finite-difference method.
Resumo:
This paper presents the results of a computational study of laminar axisymmetric plumes generated by the simultaneous diffusion of thermal energy and chemical species. Species concentrations are assumed small. The plume is treated as a boundary layer. Boussinesq approximations are incorporated and the governing conservation equations of mass, momentum, energy and species are suitably non-dimensionalised. These equations are solved using one time-step-forward explicit finite-difference method. Upwind differencing is employed for convective terms. The results thus obtained are explained in terms of the basic physical mechanisms that govern these flows. They show many interesting aspects of the complex interaction of the two buoyant mechanisms.
Resumo:
An attempt to diagnose the dominant forcings which drive the large-scale vertical velocities over the monsoon region has been made by computing the forcings like diabatic heating fields,etc. and the large-scale vertical velocities driven by these forcings for the contrasting periods of active and break monsoon situations; in order to understand the rainfall variability associated with them. Computation of diabatic heating fields show us that among different components of diabatic heating it is the convective heating that dominates at mid-tropospheric levels during an active monsoon period; whereas it is the sensible heating at the surface that is important during a break period. From vertical velocity calculations we infer that the prime differences in the large-scale vertical velocities seen throughout the depth of the atmosphere are due to the differences in the orders of convective heating; the maximum rate of latent heating being more than 10 degrees Kelvin per day during an active monsoon period; whereas during a break monsoon period it is of the order of 2 degrees Kelvin per day at mid-tropospheric levels. At low levels of the atmosphere, computations show that there is large-scale ascent occurring over a large spatial region, driven only by the dynamic forcing associated with vorticity and temperature advection during an active monsoon period. However, during a break monsoon period such large-scale spatial organization in rising motion is not seen. It is speculated that these differences in the low-level large-scale ascent might be causing differences in convective heating because the weaker the low level ascent, the lesser the convective instability which produces deep cumulus clouds and hence lesser the associated latent heat release. The forcings due to other components of diabatic heating, namely, the sensible heating and long wave radiative cooling do not influence the large-scale vertical velocities significantly.
Resumo:
In this paper, we suggest criteria for the identification of active and break events of the Indian summer monsoon on the basis of recently derived high resolution daily gridded rainfall dataset over India (1951-2007). Active and break events are defined as periods during the peak monsoon months of July and August, in which the normalized anomaly of the rainfall over a critical area, called the monsoon core zone exceeds 1 or is less than -1.0 respectively, provided the criterion is satisfied for at least three consecutive days. We elucidate the major features of these events. We consider very briefly the relationship of the intraseasonal fluctuations between these events and the interannual variation of the summer monsoon rainfall. We find that breaks tend to have a longer life-span than active spells.While, almost 80% of the active spells lasted 3-4 days, only 40% of the break spells were of such short duration. A small fraction (9%) of active spells and 32% of break spells lasted for a week or longer. While active events occurred almost every year, not a single break occurred in 26% of the years considered. On an average, there are 7 days of active and break events from July through August. There are no significant trends in either the days of active or break events. We have shown that there is a major difference between weak spells and long intense breaks. While weak spells are characterized by weak moist convective regimes, long intense break events have a heat trough type circulation which is similar to the circulation over the Indian subcontinent before the onset of the monsoon. The space-time evolution of the rainfall composite patterns suggests that the revival from breaks occurs primarily from northward propagations of the convective cloud zone. There are important differences between the spatial patterns of the active/break spells and those characteristic of interannual variation, particularly those associated with the link to ENSO. Hence, the interannual variation of the Indian monsoon cannot be considered as primarily arising from the interannual variation of intraseasonal variation. However, the signature over the eastern equatorial Indian Ocean on intraseasonal time scales is similar to that on the interannual time scales.
Resumo:
Aims. Following an earlier proposal for the origin of twist in the magnetic fields of solar active regions, we model the penetration of a wrapped up background poloidal field into a toroidal magnetic flux tube rising through the solar convective zone.Methods. The rise of the straight, cylindrical flux tube is followed by numerically solving the induction equation in a comoving Lagrangian frame, while an external poloidal magnetic field is assumed to be radially advected onto the tube with a speed corresponding to the rise velocity.Results. One prediction of our model is the existence of a ring of reverse current helicity on the periphery of active regions. On the other hand, the amplitude of the resulting twist depends sensitively on the assumed structure ( diffuse vs. concentrated/intermittent) of the active region magnetic field right before its emergence, and on the assumed vertical profile of the poloidal field. Nevertheless, in the model with the most plausible choice of assumptions a mean twist comparable to the observations results.Conclusions. Our results indicate that the contribution of this mechanism to the twist can be quite significant, and under favourable circumstances it can potentially account for most of the current helicity observed in active regions.
Resumo:
The use of electroacoustic analogies suggests that a source of acoustical energy (such as an engine, compressor, blower, turbine, loudspeaker, etc.) can be characterized by an acoustic source pressure ps and internal source impedance Zs, analogous to the open-circuit voltage and internal impedance of an electrical source. The present paper shows analytically that the source characteristics evaluated by means of the indirect methods are independent of the loads selected; that is, the evaluated values of ps and Zs are unique, and that the results of the different methods (including the direct method) are identical. In addition, general relations have been derived here for the transfer of source characteristics from one station to another station across one or more acoustical elements, and also for combining several sources into a single equivalent source. Finally, all the conclusions are extended to the case of a uniformly moving medium, incorporating the convective as well as dissipative effects of the mean flow.
Resumo:
This study uses the European Centre for Medium-Range Weather Forecasts (ECMWF) model-generated high-resolution 10-day-long predictions for the Year of Tropical Convection (YOTC) 2008. Precipitation forecast skills of the model over the tropics are evaluated against the Tropical Rainfall Measuring Mission (TRMM) estimates. It has been shown that the model was able to capture the monthly to seasonal mean features of tropical convection reasonably. Northward propagation of convective bands over the Bay of Bengal was also forecasted realistically up to 5 days in advance, including the onset phase of the monsoon during the first half of June 2008. However, large errors exist in the daily datasets especially for longer lead times over smaller domains. For shorter lead times (less than 4-5 days), forecast errors are much smaller over the oceans than over land. Moreover, the rate of increase of errors with lead time is rapid over the oceans and is confined to the regions where observed precipitation shows large day-to-day variability. It has been shown that this rapid growth of errors over the oceans is related to the spatial pattern of near-surface air temperature. This is probably due to the one-way air-sea interaction in the atmosphere-only model used for forecasting. While the prescribed surface temperature over the oceans remain realistic at shorter lead times, the pattern and hence the gradient of the surface temperature is not altered with change in atmospheric parameters at longer lead times. It has also been shown that the ECMWF model had considerable difficulties in forecasting very low and very heavy intensity of precipitation over South Asia. The model has too few grids with ``zero'' precipitation and heavy (>40 mm day(-1)) precipitation. On the other hand, drizzle-like precipitation is too frequent in the model compared to that in the TRMM datasets. Further analysis shows that a major source of error in the ECMWF precipitation forecasts is the diurnal cycle over the South Asian monsoon region. The peak intensity of precipitation in the model forecasts over land (ocean) appear about 6 (9) h earlier than that in the observations. Moreover, the amplitude of the diurnal cycle is much higher in the model forecasts compared to that in the TRMM estimates. It has been seen that the phase error of the diurnal cycle increases with forecast lead time. The error in monthly mean 3-hourly precipitation forecasts is about 2-4 times of the error in the daily mean datasets. Thus, effort should be given to improve the phase and amplitude forecast of the diurnal cycle of precipitation from the model.