59 resultados para contemporary strategy
Resumo:
Most bacterial genomes harbor restriction-modification systems, encoding a REase and its cognate MTase. On attack by a foreign DNA, the REase recognizes it as nonself and subjects it to restriction. Should REases be highly specific for targeting the invading foreign DNA? It is often considered to be the case. However, when bacteria harboring a promiscuous or high-fidelity variant of the REase were challenged with bacteriophages, fitness was maximal under conditions of catalytic promiscuity. We also delineate possible mechanisms by which the REase recognizes the chromosome as self at the noncanonical sites, thereby preventing lethal dsDNA breaks. This study provides a fundamental understanding of how bacteria exploit an existing defense system to gain fitness advantage during a host-parasite coevolutionary ``arms race.''
Resumo:
Purpose: To optimize the data-collection strategy for diffuse optical tomography and to obtain a set of independent measurements among the total measurements using the model based data-resolution matrix characteristics. Methods: The data-resolution matrix is computed based on the sensitivity matrix and the regularization scheme used in the reconstruction procedure by matching the predicted data with the actual one. The diagonal values of data-resolution matrix show the importance of a particular measurement and the magnitude of off-diagonal entries shows the dependence among measurements. Based on the closeness of diagonal value magnitude to off-diagonal entries, the independent measurements choice is made. The reconstruction results obtained using all measurements were compared to the ones obtained using only independent measurements in both numerical and experimental phantom cases. The traditional singular value analysis was also performed to compare the results obtained using the proposed method. Results: The results indicate that choosing only independent measurements based on data-resolution matrix characteristics for the image reconstruction does not compromise the reconstructed image quality significantly, in turn reduces the data-collection time associated with the procedure. When the same number of measurements (equivalent to independent ones) are chosen at random, the reconstruction results were having poor quality with major boundary artifacts. The number of independent measurements obtained using data-resolution matrix analysis is much higher compared to that obtained using the singular value analysis. Conclusions: The data-resolution matrix analysis is able to provide the high level of optimization needed for effective data-collection in diffuse optical imaging. The analysis itself is independent of noise characteristics in the data, resulting in an universal framework to characterize and optimize a given data-collection strategy. (C) 2012 American Association of Physicists in Medicine. http://dx.doi.org/10.1118/1.4736820]
Resumo:
The present work demonstrates a novel strategy to synthesize orthogonally bio-engineered magnetonanohybrids (MNPs) through the design of versatile, biocompatible linkers whose structure includes: (i) a robust anchor to bind with metal-oxide surfaces; (ii) tailored surface groups to act as spacers and (iii) a general method to implement orthogonal functionalizations of the substrate via ``click chemistry''. Ligands that possess the synthetic generality of features (i)-(iii) are categorized as ``universal ligands''. Herein, we report the synthesis of a novel, azido-terminated poly(ethylene glycol) (PEG) silane that can easily self-assemble on MNPs through hetero-condensation between surface hydroxyl groups and the silane end of the ligand, and simultaneously provide multiple clickable sites for high density, chemoselective bio-conjugation. To establish the universal-ligand-strategy, we clicked alkyl-functionalized folate onto the surface of PEGylated MNPs. By further integrating a near-infrared fluorescent (NIRF) marker (Alexa-Fluor 647) with MNPs, we demonstrated their folate-receptor mediated internalization inside cancer cells and subsequent translocation into lysosomes and mitochondria. Ex vivo NIRF imaging established that the azido-PEG-silane developed in course of the study can effectively reduce the sequestration of MNPs by macrophage organs (viz. liver and spleen). These folate-PEG-MNPs were not only stealth and noncytotoxic but their dual optical and magnetic properties aided in tracking their whereabouts through combined magnetic resonance and optical imaging. Together, these results provided a strong motivation for the future use of the ``universal ligand'' strategy towards development of ``smart'' nanohybrids for theragnostic applications.
Resumo:
Recently, we have demonstrated that the protease domain of NS3 alone can bind specifically to hepatitis C virus (HCV) internal ribosome entry site (IRES) near the initiator AUG, dislodges human La protein and inhibits translation in favor of viral RNA replication. Here, by using a computational approach, the contact points of the protease on the HCV IRES were putatively mapped. A 30-mer NS3 peptide was designed from the predicted RNA-binding region that retained RNA-binding ability and also inhibited IRES-mediated translation. This peptide was truncated to 15 mer and this also demonstrated ability to inhibit HCV RNA-directed translation as well as replication. More importantly, its activity was tested in an in vivo mouse model by encapsulating the peptide in Sendai virus virosomes followed by intravenous delivery. The study demonstrates for the first time that the HCV NS3-IRES RNA interaction can be selectively inhibited using a small peptide and reports a strategy to deliver the peptide into the liver.
Resumo:
We report the synthesis of trigonal and tetragonal phase GeO2 films/microrods from a Ge wafer/powder by thermal oxidation. Both trigonal and tetragonal GeO2 exhibit excitation-dependent luminescence. Trigonal GeO2 exhibits strong green luminescence while tetragonal GeO2 exhibits strong blue luminescence when excited with ultra-violet light. Yellow-red luminescence is observed when both the phases are excited with green light. The emission wavelength varies almost linearly with the excitation wavelength both for trigonal and tetragonal GeO2. The variation is significant in the case of tetragonal GeO2, indicating a potential wavelength converter material.
Resumo:
Query focused summarization is the task of producing a compressed text of original set of documents based on a query. Documents can be viewed as graph with sentences as nodes and edges can be added based on sentence similarity. Graph based ranking algorithms which use 'Biased random surfer model' like topic-sensitive LexRank have been successfully applied to query focused summarization. In these algorithms, random walk will be biased towards the sentences which contain query relevant words. Specifically, it is assumed that random surfer knows the query relevance score of the sentence to where he jumps. However, neighbourhood information of the sentence to where he jumps is completely ignored. In this paper, we propose look-ahead version of topic-sensitive LexRank. We assume that random surfer not only knows the query relevance of the sentence to where he jumps but he can also look N-step ahead from that sentence to find query relevance scores of future set of sentences. Using this look ahead information, we figure out the sentences which are indirectly related to the query by looking at number of hops to reach a sentence which has query relevant words. Then we make the random walk biased towards even to the indirect query relevant sentences along with the sentences which have query relevant words. Experimental results show 20.2% increase in ROUGE-2 score compared to topic-sensitive LexRank on DUC 2007 data set. Further, our system outperforms best systems in DUC 2006 and results are comparable to state of the art systems.
Resumo:
The inverse problem in photoacoustic tomography (PAT) seeks to obtain the absorbed energy map from the boundary pressure measurements for which computationally intensive iterative algorithms exist. The computational challenge is heightened when the reconstruction is done using boundary data split into its frequency spectrum to improve source localization and conditioning of the inverse problem. The key idea of this work is to modify the update equation wherein the Jacobian and the perturbation in data are summed over all wave numbers, k, and inverted only once to recover the absorbed energy map. This leads to a considerable reduction in the overall computation time. The results obtained using simulated data, demonstrates the efficiency of the proposed scheme without compromising the accuracy of reconstruction.
Resumo:
This work presents a finite element-based strategy for exterior acoustical problems based on an assumed pressure form that favours outgoing waves. The resulting governing equation, weak formulation, and finite element formulation are developed both for coupled and uncoupled problems. The developed elements are very similar to conventional elements in that they are based on the standard Galerkin variational formulation and use standard Lagrange interpolation functions and standard Gaussian quadrature. In addition and in contrast to wave envelope formulations and their extensions, the developed elements can be used in the immediate vicinity of the radiator/scatterer. The method is similar to the perfectly matched layer (PML) method in the sense that each layer of elements added around the radiator absorbs acoustical waves so that no boundary condition needs to be applied at the outermost boundary where the domain is truncated. By comparing against strategies such as the PML and wave-envelope methods, we show that the relative accuracy, both in the near and far-field results, is considerably higher.
Resumo:
Backgrond: Muscular dystrophies consist of a number of juvenile and adult forms of complex disorders which generally cause weakness or efficiency defects affecting skeletal muscles or, in some kinds, other types of tissues in all parts of the body are vastly affected. In previous studies, it was observed that along with muscular dystrophy, immune inflammation was caused by inflammatory cells invasion - like T lymphocyte markers (CD8+/CD4+). Inflammatory processes play a major part in muscular fibrosis in muscular dystrophy patients. Additionally, a significant decrease in amounts of two myogenic recovery factors (myogenic differentation 1 MyoD] and myogenin) in animal models was observed. The drug glatiramer acetate causes anti-inflammatory cytokines to increase and T helper (Th) cells to induce, in an as yet unknown mechanism. MyoD recovery activity in muscular cells justifies using it alongside this drug. Methods: In this study, a nanolipodendrosome carrier as a drug delivery system was designed. The purpose of the system was to maximize the delivery and efficiency of the two drug factors, MyoD and myogenin, and introduce them as novel therapeutic agents in muscular dystrophy phenotypic mice. The generation of new muscular cells was analyzed in SW1 mice. Then, immune system changes and probable side effects after injecting the nanodrug formulations were investigated. Results: The loaded lipodendrimer nanocarrier with the candidate drug, in comparison with the nandrolone control drug, caused a significant increase in muscular mass, a reduction in CD4+/CD8+ inflammation markers, and no significant toxicity was observed. The results support the hypothesis that the nanolipodendrimer containing the two candidate drugs will probably be an efficient means to ameliorate muscular degeneration, and warrants further investigation.
Resumo:
The problem addressed in this paper is concerned with an important issue faced by any green aware global company to keep its emissions within a prescribed cap. The specific problem is to allocate carbon reductions to its different divisions and supply chain partners in achieving a required target of reductions in its carbon reduction program. The problem becomes a challenging one since the divisions and supply chain partners, being autonomous, may exhibit strategic behavior. We use a standard mechanism design approach to solve this problem. While designing a mechanism for the emission reduction allocation problem, the key properties that need to be satisfied are dominant strategy incentive compatibility (DSIC) (also called strategy-proofness), strict budget balance (SBB), and allocative efficiency (AE). Mechanism design theory has shown that it is not possible to achieve the above three properties simultaneously. In the literature, a mechanism that satisfies DSIC and AE has recently been proposed in this context, keeping the budget imbalance minimal. Motivated by the observation that SBB is an important requirement, in this paper, we propose a mechanism that satisfies DSIC and SBB with slight compromise in allocative efficiency. Our experimentation with a stylized case study shows that the proposed mechanism performs satisfactorily and provides an attractive alternative mechanism for carbon footprint reduction by global companies.
Resumo:
Accurate and timely prediction of weather phenomena, such as hurricanes and flash floods, require high-fidelity compute intensive simulations of multiple finer regions of interest within a coarse simulation domain. Current weather applications execute these nested simulations sequentially using all the available processors, which is sub-optimal due to their sub-linear scalability. In this work, we present a strategy for parallel execution of multiple nested domain simulations based on partitioning the 2-D processor grid into disjoint rectangular regions associated with each domain. We propose a novel combination of performance prediction, processor allocation methods and topology-aware mapping of the regions on torus interconnects. Experiments on IBM Blue Gene systems using WRF show that the proposed strategies result in performance improvement of up to 33% with topology-oblivious mapping and up to additional 7% with topology-aware mapping over the default sequential strategy.
Resumo:
A highly regioselective functionalization of indole at the C-4 position by employing an aldehyde functional group as a directing group, and Ru as a catalyst, under mild reaction conditions (open flask) has been uncovered. This strategy to synthesize 4-substituted indoles is important, as this class of privileged molecules serves as a precursor for ergot alkaloids and related heterocyclic compounds.
Resumo:
Many meteorological phenomena occur at different locations simultaneously. These phenomena vary temporally and spatially. It is essential to track these multiple phenomena for accurate weather prediction. Efficient analysis require high-resolution simulations which can be conducted by introducing finer resolution nested simulations, nests at the locations of these phenomena. Simultaneous tracking of these multiple weather phenomena requires simultaneous execution of the nests on different subsets of the maximum number of processors for the main weather simulation. Dynamic variation in the number of these nests require efficient processor reallocation strategies. In this paper, we have developed strategies for efficient partitioning and repartitioning of the nests among the processors. As a case study, we consider an application of tracking multiple organized cloud clusters in tropical weather systems. We first present a parallel data analysis algorithm to detect such clouds. We have developed a tree-based hierarchical diffusion method which reallocates processors for the nests such that the redistribution cost is less. We achieve this by a novel tree reorganization approach. We show that our approach exhibits up to 25% lower redistribution cost and 53% lesser hop-bytes than the processor reallocation strategy that does not consider the existing processor allocation.