48 resultados para alcohol and other drug practice
Resumo:
We have carried out small-angle X-ray diffraction studies on complexes formed by the anionic polyelectrolytes, namely, sodium salts of double and single stranded (ds and ss) DNA, poly( glutamic acid) ( PGA), poly( acrylic acid) (PAA), and poly( styrene sulfonate) (PSS) with a cationic surfactant system consisting of cetyltrimethylammonium bromide ( CTAB) and sodium 3-hydroxy-2-naphthoate (SHN). All complexes have a two-dimensional (2D) hexagonal structure at low SHN concentrations. DNA-CTAB-SHN complexes exhibit a hexagonal to lamellar transition near the SHN concentration at which CTAB-SHN micelles show a cylinder to bilayer transformation. On the other hand, PGA and PAA complexes form a 2D centered rectangular phase at higher SHN concentrations, and PSS complexes show a primitive rectangular structure. These results provide a striking example of polyion specificity in polyelectrolytesurfactant interactions.
Resumo:
In this paper, we present a kinematic theory for Hoberman and other similar foldable linkages. By recognizing that the building blocks of such linkages can be modeled as planar linkages, different classes of possible solutions are systematically obtained including some novel arrangements. Criteria for foldability are arrived by analyzing the algebraic locus of the coupler curve of a PRRP linkage. They help explain generalized Hoberman and other mechanisms reported in the literature. New properties of such mechanisms including the extent of foldability, shape-preservation of the inner and outer profiles, multi-segmented assemblies and heterogeneous circumferential arrangements are derived. The design equations derived here make the conception of even complex planar radially foldable mechanisms systematic and easy. Representative examples are presented to illustrate the usage of the design equations and the kinematic theory.
Resumo:
Abstract | Electrical switching which has applications in areas such as information storage, power control, etc is a scientifically interesting and technologically important phenomenon exhibited by glassy chalcogenide semiconductors. The phase change memories based on electrical switching appear to be the most promising next generation non-volatile memories, due to many attributes which include high endurance in write/read operations, shorter write/read time, high scalability, multi-bit capability, lower cost and a compatibility with complementary metal oxide semiconductor technology.Studies on the electrical switching behavior of chalcogenide glasses help us in identifying newer glasses which could be used for phase change memory applications. In particular, studies on the composition dependence of electrical switching parameters and investigations on the correlation between switching behavior with other material properties are necessary for the selection of proper compositions which make good memory materials.In this review, an attempt has been made to summarize the dependence of the electrical switching behavior of chalcogenide glasses with other material properties such as network topological effects, glass transition & crystallization temperature, activation energy for crystallization, thermal diffusivity, electrical resistivity and others.
Resumo:
Binding of several bisindolylmaleimide (BIS) like (BIS-3, BIS-8 and UCN1) and other ligands (H89, SB203580 and Y27632) with the glycogen synthase kinase-3 (GSK-3 beta) has been studied using combined docking, molecular dynamics and Poisson-Boltzmann surface area analysis approaches. The study generated novel binding modes of these ligands that can rationalize why some ligands inhibit GSK-3 beta while others do not. The relative binding free energies associated with these binding modes are in agreement with the corresponding measured specificities. This study further provides useful insight regarding possible existence of multiple conformations of some ligands like H89 and BIS-8. It is also found that binding modes of BIS-3, BIS-8 and UCN1 with GSK-3 beta and PDK1 kinases are similar. These new insights are expected to be useful for future rational design of novel, more potent GSK-3 beta-specific inhibitors as promising therapeutics.
Resumo:
Carbon nanomaterials (CNMs), such as exfoliated graphene (EG), long-chain functionalized EG, single-walled carbon nanotubes (SWNTs), and fullerene (C-60), have been investigated for their interaction with two structurally different gelators based on all-trans tri-p-phenylenevinylene bis-aldoxime (1) and n-lauroyl-L-alanine (2) both in solution and in supramolecular organogels. Gelation occurs in toluene through hydrogen bonding and van der Waals interactions for 1 and 2 in addition to pp stacking specifically in the case of 1. These nanocomposites provide a thorough understanding in terms of molecular-level interactions of dimensionally different CNMs with structurally different gelators. The presence of densely wrapped CNMs encapsulated fibrous network in the resulting composites is evident from various spectroscopic and microscopic studies, indicating the presence of supramolecular interactions. Concentration- and temperature-dependent UV/Vis and fluorescence spectra show that CNMs promote aggregation of the gelator molecules, leading to hypochromism and quenching of the fluorescence intensity. Thermotropic mesophases of 1 are altered by the inclusion of a small amount of CNMs. The gelCNM composites show increased electrical conductivity compared with that of the native organogel. Rheological studies of the composites demonstrate the formation of rigid and viscoelastic solidlike assembly due to reinforced aggregation of the gelators on CNMs. Synergistic behavior is observed in case of the composite gel of 1, containing a mixture of EG and SWNT, when compared with other mixtures of CNMs in all combinations with EG. This affords new nanocomposites with interesting optical, thermal, electrical, and mechanical properties.
Resumo:
Further miniaturization of magnetic and electronic devices demands thin films of advanced nanomaterials with unique properties. Spinel ferrites have been studied extensively owing to their interesting magnetic and electrical properties coupled with stability against oxidation. Being an important ferrospinel, zinc ferrite has wide applications in the biological (MRI) and electronics (RF-CMOS) arenas. The performance of an oxide like ZnFe2O4 depends on stoichiometry (defect structure), and technological applications require thin films of high density, low porosity and controlled microstructure, which depend on the preparation process. While there are many methods for the synthesis of polycrystalline ZnFe2O4 powder, few methods exist for the deposition of its thin films, where prolonged processing at elevated temperature is not required. We report a novel, microwave-assisted, low temperature (<100°C) deposition process that is conducted in the liquid medium, developed for obtaining high quality, polycrystalline ZnFe2O4 thin films on technologically important substrates like Si(100). An environment-friendly solvent (ethanol) and non-hazardous oxide precursors (β-diketonates of Zn and Fe in 1:2 molar ratio), forming a solution together, is subjected to irradiation in a domestic microwave oven (2.45 GHz) for a few minutes, leading to reactions which result in the deposition of ZnFe2O4 films on Si (100) substrates suspended in the solution. Selected surfactants added to the reactant solution in optimum concentration can be used to control film microstructure. The nominal temperature of the irradiated solution, i.e., film deposition temperature, seldom exceeds 100°C, thus sharply lowering the thermal budget. Surface roughness and uniformity of large area depositions (50x50 mm2) are controlled by tweaking the concentration of the mother solution. Thickness of the films thus grown on Si (100) within 5 min of microwave irradiation can be as high as several microns. The present process, not requiring a vacuum system, carries a very low thermal budget and, together with a proper choice of solvents, is compatible with CMOS integration. This novel solution-based process for depositing highly resistive, adherent, smooth ferrimagnetic films on Si (100) is promising to RF engineers for the fabrication of passive circuit components. It is readily extended to a wide variety of functional oxide films.
Resumo:
Nanoparticles are used for a number of biomedical applications. In this work we report the synthesis of folic acid (FA) modified polyethylene glycol (PEG) functionalized hydroxyapatite (HAp) nanoparticles. The anticancer drug, paclitaxel, is attached to the folic acid modified polyethylene glycol functionalized hydroxyapatite nanoparticles and the in vitro drug release is analyzed. The surface modification and functionalization is confirmed by Fourier transform infrared spectroscopy (FTIR), thermo gravimetric analysis (TGA) and UV spectroscopy. The importance of the paper is the investigation of the release behavior of paclitaxel conjugated folic acid modified polyethylene glycol functionalized hydroxyapatite nanoparticles. The results show an initial rapid release and then a sustained release. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Recent experiments on fermions in synthetic gauge fields result in systems with a spin-orbit coupling along one spatial axis, a detuning field, and a Zeeman field. We show theoretically that the presence of all three results in interesting and unusual phenomena in a system of interacting fermions (interactions described by a scattering length). For two fermions, bound states appear only over a certain range of the center-of-mass momenta. The deepest bound state appears at a nonzero center-of-mass momentum. For center-of-mass momenta without a bound state, the gauge field induces a resonance-like feature in the scattering continuum resulting in a large scattering phase shift. In the case of many particles, we demonstrate that the system, in a parameter range, shows flow-enhanced pairing, i.e., a Fulde-Farrell-Larkin-Ovchnnikov superfluid state made of robust pairs with a finite center-of-mass momentum. Yet another regime of parameters offers the opportunity to study strongly interacting normal states of spin-orbit-coupled fermionic systems utilizing the resonance-like feature induced by the synthetic gauge field.
Resumo:
Chemical doping of graphene becomes necessary to create a band gap which is useful for various applications. Furthermore, chemical doping of elements like boron and nitrogen in graphene gives rise to useful properties. Since chemically doped graphene is both of academic and technical importance, we have prepared this article on the present status of various aspects of this important class of materials. In doing so, we have covered the recent literature on this subject citing all the major references. Some of the aspects that we have covered are the synthesis of chemically doped graphene followed by properties and applications. The applications discussed relate to gas adsorption, lithium batteries, supercapacitors, oxygen reduction reaction, field emission and photochemical water splitting. Characterization of chemically doped graphene also included. We believe that the article will be useful to all those interested in graphene and related materials and provides the present status of the subject. (C) 2014 Elsevier Ltd. All rights reserved.