126 resultados para ZINC IMPURITIES
Resumo:
We show, for sufficiently high temperatures and sufficiently weak majority-carrier binding energies, that the dominant radiative transition at an isoelectronic acceptor (donor) in p-type (n-type) material consists of the recombination of singly trapped minority carriers (bound by central-cell forces) with free majority carriers attracted by a Coulomb interaction. There are two reasons why the radiative recombination rate of the free-to-bound process is greater than the bound exciton process, which dominates at lower temperatures: (i) The population of free majority-carrier states greatly exceeds that of exciton states at higher temperatures, and (ii) the oscillator strength of the free-to-bound transition is greatly enhanced by the Coulomb attraction between the free carrier and the charged isoelectronic impurity. This enhancement is important for isoelectronic centers and is easily calculable from existing exciton models. We show that the free carrier attracted by a Coulomb interaction can be viewed as a continuum excited state of the bound exciton. When we apply the results of our calculations to the GaP(Zn, O) system, we find that the major part of the room-temperature luminescence from nearest-neighbor isoelectronic Zn-O complexes results from free-to-bound recombination and not exciton recombination as has been thought previously. Recent experiments on impulse excitation of luminescence in GaP(Zn, O) are reevaluated in the light of our calculations and are shown to be consistent with a strong free-to-bound transition. For deep isoelectronic centers with weakly bound majority carriers, we predict an overwhelming dominance of the free-to-bound process at 300°K.
Resumo:
The mechanism of sub-microscopic precipitation in an Al-Zn-Mg alloy selected for its maximum response to ageing has been studied by a standardized oxide-replica technique in a 100 kV. Philips Electron Microscope. Contrary to earlier conclusions, examination of the oxide replicas has been shown to reveal details of the precipitation process almost as clearly as the thin-foil transmission technique. The reported formation of spherical Guinier-Preston zones followed by the development of a Widmanstaetten pattern of precipitated platelets has been confirmed. The zones have, however, been shown to grow into the platelets and not to dissolve in the matrix as reported earlier. The precipitation process has been correlated with the Hardness/Ageing Time curve and the structure of the precipitates has also been discussed.
Resumo:
The dispersion relations, frequency distribution function and specific heat of zinc blende have been calculated using Houston's method on (1) A short range force (S. R.) model of the type employed in diamond by Smith and (2) A long range model assuming an effective charge Ze on the ions. Since the elastic constant data on ZnS are not in agreement with one another the following values were used in these calculations: {Mathematical expression}. As compared to the results on the S. R. model, the Coulomb force causes 1. A splitting of the optical branches at (000) and a larger dispersion of these branches; 2. A rise in the acoustic frequency branches the effect being predominant in a transverse acoustic branch along [110]; 3. A bridging of the gap of forbidden frequencies in the S. R. model; 4. A reduction of the moments of the frequency distribution function and 5. A flattening of the Θ- T curve. By plotting (Θ/Θ0) vs. T., the experimental data of Martin and Clusius and Harteck are found to be in perfect coincidence with the curve for the short range model. The values of the elastic constants deduced from the ratio Θ0 (Theor)/Θ0 (Expt) agree with those of Prince and Wooster. This is surprising as several lines of evidence indicate that the bond in zinc blende is partly covalent and partly ionic. The conclusion is inescapable that the effective charge in ZnS is a function of the wave vector {Mathematical expression}.
Resumo:
Binary room temperature molten electrolytes based on acetamide and zinc perchlorate have been prepared and characterized. The electrolytes are found to be highly zinc ion-conducting with very favorable physicochemical and electrochemical characteristics. Raman and infrared spectroscopic studies reveal the presence of large free-ion concentration in the molten liquid. This is corroborated by the high conductivity observed under ambient conditions. Rechargeable zinc batteries assembled using gamma-MnO2 as the cathode and Zn as the anode with the molten electrolyte show high discharge capacities over several cycles, indicating excellent reversibility. This unique class of acetamide-based, room temperature molten liquids may become viable and green alternative electrolytes for rechargeable zinc-based secondary batteries. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Large quantities of single-crystalline ZnO nanorods and nanotubes have been prepared by the microwave, irradiation of a metalorganic complex of zinc, in the presence of a surfactant. The method is simple, fast, and inexpensive (as it uses a domestic microwave oven), and yields pure nanostructures of the hexagonal wurtzite phase of ZnO in min, and requires no conventional templating. The ZnO nanotubes formed have a hollow core with inner diameter varying from 140-160 nm and a wall of thickness, 40-50 nm. The length of nanorods and nanotubes varies in the narrow range of 500-600 nm. These nanostructures have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED). The ZnO nanorods and nanotubes are found by SAED to be single-crystalline. The growth process of ZnO nanorods and nanotubes has been investigated by varying the surfactant concentration and microwave irradiation time. Based on the various results obtained, a tentative and plausible mechanism for the formation of ZnO nanostructures is proposed.
Resumo:
Nanostructured ZnFe2O4 ferrites with different grain sizes were prepared by high energy ball milling for various milling times. Both the average grain size and the root mean square strain were estimated from the x-ray diffraction line broadening. The lattice parameter initially decreases slightly with milling and it increases with further milling. The magnetization is found to increase as the grain size decreases and its large value is attributed to the cation inversion associated with grain size reduction. The Fe-57 Mossbauer spectra were recorded at 300 K and 77 K for the samples with grain sizes of 22 and 11 nm. There is no evidence for the presence of the Fe2+ charge state. At 77 K the Mossbauer spectra consist of a magnetically ordered component along with a doublet due to the superparamagnetic behaviour of small crystalline grains with the superparamagnetic component decreasing with grain size reduction. At 4.2 K the sample with 11 nm grain size displays a magnetically blocked state as revealed by the Mossbauer spectrum. The Mossbauer spectrum of this sample recorded at 10 K in an external magnetic field of 6 T applied parallel to the direction of gamma rays clearly shows ferrimagnetic ordering of the sample. Also, the sample exhibits spin canting with a large canting angle, maybe due to a spin-glass-like surface layer or grain boundary anisotropies in the material.
Resumo:
p-aminobenzoate could be intercalated into the anionic clay, Ni3Zn2(OH)(8)(OAc)(2)center dot 2H(2)O at a high pH (similar to 10). When the pH was reduced to similar to 7 while washing colloidal dispersion due to delamination was observed. The development of partial positive charge on the amine end of the intercalated anion causes repulsion between the layers leading to delamination and colloidal dispersion of monolayers in water. The layers could be restacked from the colloid to form the parent solid either by increasing the pH or by evaporation.
Resumo:
Dodecylsulphate-intercalated zinc hydroxysalt, Zn-5(OH)(8)(DS)(2)center dot mH(2)O delaminates to give monolayer colloidal dispersions in alcohols such as 1-butanol and ethylene glycol. The extent of delamination and the stability of the colloidal dispersion are comparable to those of layered double hydroxides. The solvothermal decomposition of the colloidal dispersion of the hydroxysalt in ethylene glycol yields a bimodal ZnO having a nanotubular structure decorated with nanosheets. (C) 2010 Elsevier Masson SAS. All rights reserved.
Resumo:
Nickel zinc ferrites have been very widely used in the high‐frequency applications. In our present study we have prepared Ni1−x Znx Fe2O4 (0≤x≤1) using novel hydrazinium metal hydrazinecarboxylate precursors. High densities (∼99%) have been obtained for all the ferrites sintered at relatively low temperatures, 1100 °C, in comparison with the conventional method (≥1200 °C). The variation of magnetic properties like magnetic moment, Curie temperature, and permeability with zinc concentration have been studied.
Resumo:
The structural changes occurring during warm working of Cd-1.5 pct Zn alloy and their effect on the subsequent mechanical properties are studied. It is observed that changes in grain size and preferred orientation are important to a large extent in controlling the mechanical strength. The Hall-Petch slope,R decreases in the warm worked material while the friction stress, σo increases. The lowerR values are attributed to the development of a (101l) texture and the higher σo values are interpreted on the basis of changes in the basal texture.
Resumo:
The barrier height of MIS tunnel diodes is studied considering the effect of deep impurities. It is shown that the barrier height of a given MIS-system can be controlled by changing the density and the activation energy of the defect level. The study leads to the conclusion that deep impurities of character opposite to shallow impurities enhance the barrier height. On the other hand, the barrier height is lowered when the type of the deep impurities is the same as that of shallow impurities.
Resumo:
The resistivities of zinc borate glasses containing Fe2O3, V2O5, and Fe2O3 + V2O5 have been measured as a function of composition and temperature. The values of resistivity and activation energy decrease as the transition metal oxide content is increased. The conductivities of the glasses containing Fe2O3 + V2O5 are more than the sum of those of the glasses containing only Fe2O3 or V2O5 (i.e. the activation energies are less than the sum of those in the glasses containing only Fe2O3 or V2O5). The results are discussed in terms of existing theories.