169 resultados para Weight vector
Resumo:
A better performing product code vector quantization (VQ) method is proposed for coding the line spectrum frequency (LSF) parameters; the method is referred to as sequential split vector quantization (SeSVQ). The split sub-vectors of the full LSF vector are quantized in sequence and thus uses conditional distribution derived from the previous quantized sub-vectors. Unlike the traditional split vector quantization (SVQ) method, SeSVQ exploits the inter sub-vector correlation and thus provides improved rate-distortion performance, but at the expense of higher memory. We investigate the quantization performance of SeSVQ over traditional SVQ and transform domain split VQ (TrSVQ) methods. Compared to SVQ, SeSVQ saves 1 bit and nearly 3 bits, for telephone-band and wide-band speech coding applications respectively.
Resumo:
At the time of restoration transmission line switching is one of the major causes, which creates transient overvoltages. Though detailed Electro Magnetic Transient studies are carried out extensively for the planning and design of transmission systems, such studies are not common in a day-today operation of power systems. However it is important for the operator to ensure during restoration of supply that peak overvoltages resulting from the switching operations are well within safe limits. This paper presents a support vector machine approach to classify the various cases of line energization in the category of safe or unsafe based upon the peak value of overvoltage at the receiving end of line. Operator can define the threshold value of voltage to assign the data pattern in either of the class. For illustration of proposed approach the power system used for switching transient peak overvoltages tests is a 400 kV equivalent system of an Indian southern gri
Resumo:
A constant switching frequency current error space vector-based hysteresis controller for two-level voltage source inverter-fed induction motor (IM) drives is proposed in this study. The proposed controller is capable of driving the IM in the entire speed range extending to the six-step mode. The proposed controller uses the parabolic boundary, reported earlier, for vector selection in a sector, but uses simple, fast and self-adaptive sector identification logic for sector change detection in the entire modulation range. This new scheme detects the sector change using the change in direction of current error along the axes jA, jB and jC. Most of the previous schemes use an outer boundary for sector change detection. So the current error goes outside the boundary six times during sector change, in one cycle,, introducing additional fifth and seventh harmonic components in phase current. This may cause sixth harmonic torque pulsations in the motor and spread in the harmonic spectrum of phase voltage. The proposed new scheme detects the sector change fast and accurately eliminating the chance of introducing additional fifth and seventh harmonic components in phase current and provides harmonic spectrum of phase voltage, which exactly matches with that of constant switching frequency voltage-controlled space vector pulse width modulation (VC-SVPWM)-based two-level inverter-fed drives.
Resumo:
Statistical learning algorithms provide a viable framework for geotechnical engineering modeling. This paper describes two statistical learning algorithms applied for site characterization modeling based on standard penetration test (SPT) data. More than 2700 field SPT values (N) have been collected from 766 boreholes spread over an area of 220 sqkm area in Bangalore. To get N corrected value (N,), N values have been corrected (Ne) for different parameters such as overburden stress, size of borehole, type of sampler, length of connecting rod, etc. In three-dimensional site characterization model, the function N-c=N-c (X, Y, Z), where X, Y and Z are the coordinates of a point corresponding to N, value, is to be approximated in which N, value at any half-space point in Bangalore can be determined. The first algorithm uses least-square support vector machine (LSSVM), which is related to aridge regression type of support vector machine. The second algorithm uses relevance vector machine (RVM), which combines the strengths of kernel-based methods and Bayesian theory to establish the relationships between a set of input vectors and a desired output. The paper also presents the comparative study between the developed LSSVM and RVM model for site characterization. Copyright (C) 2009 John Wiley & Sons,Ltd.
Resumo:
Administration of chloromycetin has been found to enhance the oxygen uptake of the gut of the silkworm. The possibility that this increase might have been due to a thinning of the gut wall has been ruled out since the reduction in gut weight set in much later. Although glucose ultilization by the gut has been found to be increased in vitro, increase in oxygen uptake has not been affected in the presence of glucose. The possibility of a hormonal stimulation has been discussed.
Resumo:
Administration of chloromycetin has been found to enhance the oxygen uptake of the gut of the silkworm. The possibility that this increase might have been due to a thinning of the gut wall has been ruled out since the reduction in gut weight set in much later. Although glucose ultilization by the gut has been found to be increased in vitro, increase in oxygen uptake has not been affected in the presence of glucose. The possibility of a hormonal stimulation has been discussed.
Resumo:
In this paper, we present two new filtered backprojection (FBP) type algorithms for cylindrical detector helical cone-beam geometry with no position dependent backprojection weight. The algorithms are extension of the recent exact Hilbert filtering based 2D divergent beam reconstruction with no backprojection weight to the FDK type algorithm for reconstruction in 3D helical trajectory cone-beam tomography. The two algorithms named HFDK-W1 and HFDK-W2 result in better image quality, noise uniformity, lower noise and reduced cone-beam artifacts.
Resumo:
Space-Time Block Codes (STBCs) from Complex Orthogonal Designs (CODs) are single-symbol decodable/symbol-by-symbol decodable (SSD); however, SSD codes are obtainable from designs that are not CODs. Recently, two such classes of SSD codes have been studied: (i) Coordinate Interleaved Orthogonal Designs (CIODs) and (ii) Minimum-Decoding-Complexity (MDC) STBCs from Quasi-ODs (QODs). The class of CIODs have non-unitary weight matrices when written as a Linear Dispersion Code (LDC) proposed by Hassibi and Hochwald, whereas the other class of SSD codes including CODs have unitary weight matrices. In this paper, we construct a large class of SSD codes with nonunitary weight matrices. Also, we show that the class of CIODs is a special class of our construction.
Resumo:
Power system disturbances are often caused by faults on transmission lines. When faults occur in a power system, the protective relays detect the fault and initiate tripping of appropriate circuit breakers, which isolate the affected part from the rest of the power system. Generally Extra High Voltage (EHV) transmission substations in power systems are connected with multiple transmission lines to neighboring substations. In some cases mal-operation of relays can happen under varying operating conditions, because of inappropriate coordination of relay settings. Due to these actions the power system margins for contingencies are decreasing. Hence, power system protective relaying reliability becomes increasingly important. In this paper an approach is presented using Support Vector Machine (SVM) as an intelligent tool for identifying the faulted line that is emanating from a substation and finding the distance from the substation. Results on 24-bus equivalent EHV system, part of Indian southern grid, are presented for illustration purpose. This approach is particularly important to avoid mal-operation of relays following a disturbance in the neighboring line connected to the same substation and assuring secure operation of the power systems.
Resumo:
Core Vector Machine(CVM) is suitable for efficient large-scale pattern classification. In this paper, a method for improving the performance of CVM with Gaussian kernel function irrespective of the orderings of patterns belonging to different classes within the data set is proposed. This method employs a selective sampling based training of CVM using a novel kernel based scalable hierarchical clustering algorithm. Empirical studies made on synthetic and real world data sets show that the proposed strategy performs well on large data sets.
Resumo:
We present two new support vector approaches for ordinal regression. These approaches find the concentric spheres with minimum volume that contain most of the training samples. Both approaches guarantee that the radii of the spheres are properly ordered at the optimal solution. The size of the optimization problem is linear in the number of training samples. The popular SMO algorithm is adapted to solve the resulting optimization problem. Numerical experiments on some real-world data sets verify the usefulness of our approaches for data mining.
Resumo:
In this paper. we propose a novel method using wavelets as input to neural network self-organizing maps and support vector machine for classification of magnetic resonance (MR) images of the human brain. The proposed method classifies MR brain images as either normal or abnormal. We have tested the proposed approach using a dataset of 52 MR brain images. Good classification percentage of more than 94% was achieved using the neural network self-organizing maps (SOM) and 98% front support vector machine. We observed that the classification rate is high for a Support vector machine classifier compared to self-organizing map-based approach.
Resumo:
This paper discusses a method for scaling SVM with Gaussian kernel function to handle large data sets by using a selective sampling strategy for the training set. It employs a scalable hierarchical clustering algorithm to construct cluster indexing structures of the training data in the kernel induced feature space. These are then used for selective sampling of the training data for SVM to impart scalability to the training process. Empirical studies made on real world data sets show that the proposed strategy performs well on large data sets.
Resumo:
Reconstructions in optical tomography involve obtaining the images of absorption and reduced scattering coefficients. The integrated intensity data has greater sensitivity to absorption coefficient variations than scattering coefficient. However, the sensitivity of intensity data to scattering coefficient is not zero. We considered an object with two inhomogeneities (one in absorption and the other in scattering coefficient). The standard iterative reconstruction techniques produced results, which were plagued by cross talk, i.e., the absorption coefficient reconstruction has a false positive corresponding to the location of scattering inhomogeneity, and vice-versa. We present a method to remove cross talk in the reconstruction, by generating a weight matrix and weighting the update vector during the iteration. The weight matrix is created by the following method: we first perform a simple backprojection of the difference between the experimental and corresponding homogeneous intensity data. The built up image has greater weightage towards absorption inhomogeneity than the scattering inhomogeneity and its appropriate inverse is weighted towards the scattering inhomogeneity. These two weight matrices are used as multiplication factors in the update vectors, normalized backprojected image of difference intensity for absorption inhomogeneity and the inverse of the above for the scattering inhomogeneity, during the image reconstruction procedure. We demonstrate through numerical simulations, that cross-talk is fully eliminated through this modified reconstruction procedure.
Resumo:
The problem of narrowband CFAR (constant false alarm rate) detection of an acoustic source at an unknown location in a range-independent shallow ocean is considered. If a target is present, the received signal vector at an array of N sensors belongs to an M-dimensional subspace if N exceeds the number of propagating modes M in the ocean. A subspace detection method which utilises the knowledge of the signal subspace to enhance the detector performance is presented in thisMpaper. It is shown that, for a given number of sensors N, the performance of a detector using a vector sensor array is significantly better than that using a scalar sensor array. If a target is detected, the detector using a vector sensor array also provides a concurrent coarse estimate of the bearing of the target.