123 resultados para Unified Lending
Resumo:
We propose an algorithmic technique for accelerating maximum likelihood (ML) algorithm for image reconstruction in fluorescence microscopy. This is made possible by integrating Biggs-Andrews (BA) method with ML approach. The results on widefield, confocal, and super-resolution 4Pi microscopy reveal substantial improvement in the speed of 3D image reconstruction (the number of iterations has reduced by approximately one-half). Moreover, the quality of reconstruction obtained using accelerated ML closely resembles with nonaccelerated ML method. The proposed technique is a step closer to realize real-time reconstruction in 3D fluorescence microscopy. Microsc. Res. Tech. 78:331-335, 2015. (c) 2015 Wiley Periodicals, Inc.
Resumo:
This paper deals with modeling of the first damage mode, matrix micro-cracking, in helicopter rotor/wind turbine blades and how this effects the overall cross-sectional stiffness. The helicopter/wind turbine rotor system operates in a highly dynamic and unsteady environment leading to severe vibratory loads present in the system. Repeated exposure to this loading condition can induce damage in the composite rotor blades. These rotor/turbine blades are generally made of fiber-reinforced laminated composites and exhibit various competing modes of damage such as matrix micro-cracking, delamination, and fiber breakage. There is a need to study the behavior of the composite rotor system under various key damage modes in composite materials for developing Structural Health Monitoring (SHM) system. Each blade is modeled as a beam based on geometrically non-linear 3-D elasticity theory. Each blade thus splits into 2-D analyzes of cross-sections and non-linear 1-D analyzes along the beam reference curves. Two different tools are used here for complete 3-D analysis: VABS for 2-D cross-sectional analysis and GEBT for 1-D beam analysis. The physically-based failure models for matrix in compression and tension loading are used in the present work. Matrix cracking is detected using two failure criterion: Matrix Failure in Compression and Matrix Failure in Tension which are based on the recovered field. A strain variable is set which drives the damage variable for matrix cracking and this damage variable is used to estimate the reduced cross-sectional stiffness. The matrix micro-cracking is performed in two different approaches: (i) Element-wise, and (ii) Node-wise. The procedure presented in this paper is implemented in VABS as matrix micro-cracking modeling module. Three examples are presented to investigate the matrix failure model which illustrate the effect of matrix cracking on cross-sectional stiffness by varying the applied cyclic
Resumo:
A review of published literature on the biosorption of metals using nonliving biomass is presented. Factors such as pH, temperature, initial metal concentration, biomass loaning, the presence of co-ions and the pretreatment of biomass influence the metal uptake by biomass. Although few generalizations are possible, unified theor ies regarding the mechanism of uptake are not available. Therefore, the above aspects of metal biosorption have to be defined individually for each biomass and metal-ion pair.
Resumo:
A detailed study was undertaken to characterize the deformation behavior of a superplastic 3 mol% yttria-stabilized tetragonal zirconia (3YTZ) over a wide range of strain rates, temperatures and grain sizes. The experimental data were analyzed in terms of the following equation for high temperature deformation: Image Full-size image ∞ σn d−pexp(−Q/RT), where Image Full-size image is the strain rate, σ is the flow stress, d is the grain size, Q is the activation energy, R is the gas constant, T is the absolute temperature, and n and p are constants termed the stress exponent and the inverse grain size exponent, respectively. The experimental data over a wide range of stresses revealed a transition in stress exponent. Deformation in the low and high stress regions was associated with n not, vert, similar 3 and p not, vert, similar 1, and n not, vert, similar 2 and p not, vert, similar 3, respectively. The transition stress between the two regions decreased with increasing grain size. The activation energy was similar for both regions with a value of not, vert, similar 550 kJ mol−1. Microstructural measurements revealed that grains remained essentially equiaxed after the accumulation of large strains, and very limited concurrent grain growths occurred in most experiments. Assessment of possible rate controlling creep mechanisms and comparison with previous studied indicate that in the n not, vert, similar 2 region, deformation occurs by a grain boundary sliding process whose rate is independent of impurity content. Deformation in the n not, vert, similar 3 region is controlled by an interface reaction that is highly sensitive to impurity content. It is concluded that an increase in impurity content increases yttrium segregation to grain boundaries, which enhances the rate of the interface reaction, thereby decreasing the apparent transition stress between the n not, vert, similar 2 and n not, vert, similar 3 regions. This unified approach incorporating two sequential mechanisms can rationalize many of the apparently dissimilar results that have been reported previously for deformation of 3YTZ.
Resumo:
We propose a unified model to explain Quasi-Periodic Oscillation (QPO), particularly of high frequency, observed from black hole and neutron star systems globally. We consider accreting systems to be damped harmonic oscillators exhibiting epicyclic oscillations with higher-order nonlinear resonance to explain QPO. The resonance is expected to be driven by the disturbance from the compact object at its spin frequency. The model explains various properties parallelly for both types of the compact object. It describes QPOs successfully for ten different compact sources. Based on this, we predict the spin frequency of the neutron star Sco X-1 and specific angular momentum of black holes GRO J1655–40, XTE J1550–564, H1743–322, and GRS 1915+105.
Resumo:
A computational study for the convergence acceleration of Euler and Navier-Stokes computations with upwind schemes has been conducted in a unified framework. It involves the flux-vector splitting algorithms due to Steger-Warming and Van Leer, the flux-difference splitting algorithms due to Roe and Osher and the hybrid algorithms, AUSM (Advection Upstream Splitting Method) and HUS (Hybrid Upwind Splitting). Implicit time integration with line Gauss-Seidel relaxation and multigrid are among the procedures which have been systematically investigated on an individual as well as cumulative basis. The upwind schemes have been tested in various implicit-explicit operator combinations such that the optimal among them can be determined based on extensive computations for two-dimensional flows in subsonic, transonic, supersonic and hypersonic flow regimes. In this study, the performance of these implicit time-integration procedures has been systematically compared with those corresponding to a multigrid accelerated explicit Runge-Kutta method. It has been demonstrated that a multigrid method employed in conjunction with an implicit time-integration scheme yields distinctly superior convergence as compared to those associated with either of the acceleration procedures provided that effective smoothers, which have been identified in this investigation, are prescribed in the implicit operator.
Resumo:
This paper presents on overview of the issues in precisely defining, specifying and evaluating the dependability of software, particularly in the context of computer controlled process systems. Dependability is intended to be a generic term embodying various quality factors and is useful for both software and hardware. While the developments in quality assurance and reliability theories have proceeded mostly in independent directions for hardware and software systems, we present here the case for developing a unified framework of dependability—a facet of operational effectiveness of modern technological systems, and develop a hierarchical systems model helpful in clarifying this view. In the second half of the paper, we survey the models and methods available for measuring and improving software reliability. The nature of software “bugs”, the failure history of the software system in the various phases of its lifecycle, the reliability growth in the development phase, estimation of the number of errors remaining in the operational phase, and the complexity of the debugging process have all been considered to varying degrees of detail. We also discuss the notion of software fault-tolerance, methods of achieving the same, and the status of other measures of software dependability such as maintainability, availability and safety.
Resumo:
Pin-loaded holes commonly occur in engineering structures. However, accurate analysis of such holes presents formidable difficulties because of the load-dependent contact of the pin with the plate. Significant progress has recently been achieved in the analysis of holes in isotropic plates. This paper develops a simple and accurate method for the partial contact analysis of pin-loaded holes in composites. The method is based on an inverse formulation that seeks to determine loads in a given contact-separation configuration. A unified approach for all types of fit was used. Continuum solutions were obtained for infinitely large plates of various typical orthotropic properties with holes loaded by smooth rigid pins. These solutions were then compared with those for isotropic plates. The effects of orthotropy and the type of fit were studied through load-contact relationships, distribution of stresses and displacements, and their variation with load. The results are of direct relevance to the analysis and design of pin joints in composite plates.
Resumo:
In an effort to develop a fully computerized approach for structural synthesis of kinematic chains the steps involved in the method of structural synthesis based on transformation of binary chains [38] have been recast in a format suitable for implementation on a digital computer. The methodology thus evolved has been combined with the algebraic procedures for structural analysis [44] to develop a unified computer program for structural synthesis and analysis of simple jointed kinematic chains with a degree of freedom 0. Applications of this program are presented in the succeeding parts of the paper.
Resumo:
The unified computer program for structural synthesis and analysis developed in Part 1 has been employed to derive the new and complete collection of 97 10-link, three-freedom simple-jointed kinematic chains. The program shows that of these chains, 3 have total freedom, 70 have partial freedom and the remaining 24 have fractionated freedom and that the 97 chains yield a total of 676 distinct mechanisms.
Resumo:
A unified approach to the problem of electrochemical fluctuations is presented. On the basis of the Langevin procedure, primary noise sources are introduced in the basic phenomenological equations and a discussion of the secondary noise sources arising in the expressions for the power spectra of currents is given.
Resumo:
The Gaussian probability closure technique is applied to study the random response of multidegree of freedom stochastically time varying systems under non-Gaussian excitations. Under the assumption that the response, the coefficient and the excitation processes are jointly Gaussian, deterministic equations are derived for the first two response moments. It is further shown that this technique leads to the best Gaussian estimate in a minimum mean square error sense. An example problem is solved which demonstrates the capability of this technique for handling non-linearity, stochastic system parameters and amplitude limited responses in a unified manner. Numerical results obtained through the Gaussian closure technique compare well with the exact solutions.
Resumo:
The plane problem of load transfer from an elastic interference or clearance fit pin to a large elastic sheet with a perfectly smooth interface is solved. As the load on the pin is monotonically increased, the pin-hole interface is in partial contact above certain critical load in interference fit and throughout the loading range in clearance fit.Such situations result in mixed boundary-value problems with moving boundaries and the arc of contact varies nonlinearly with applied load. These problems are analyzed by an inverse technique in which the arcs of contact/separation are prescribed and the causative loads are evaluated. A direct method of analysis is adopted using biharmonic polar trigonometric stress functions and a simple collocation method for satisfying the boundary conditions. A unified analytical formulation is achieved for interference and clearance fits. The solutions for the linear problem of push fits are inherent in the unified analysis. Numerical results highlighting the effects of pin and sheet elasticity parameters are presented.
Resumo:
Packet forwarding is a memory-intensive application requiring multiple accesses through a trie structure. With the requirement to process packets at line rates, high-performance routers need to forward millions of packets every second with each packet needing up to seven memory accesses. Earlier work shows that a single cache for the nodes of a trie can reduce the number of external memory accesses. It is observed that the locality characteristics of the level-one nodes of a trie are significantly different from those of lower level nodes. Hence, we propose a heterogeneously segmented cache architecture (HSCA) which uses separate caches for level-one and lower level nodes, each with carefully chosen sizes. Besides reducing misses, segmenting the cache allows us to focus on optimizing the more frequently accessed level-one node segment. We find that due to the nonuniform distribution of nodes among cache sets, the level-one nodes cache is susceptible t high conflict misses. We reduce conflict misses by introducing a novel two-level mapping-based cache placement framework. We also propose an elegant way to fit the modified placement function into the cache organization with minimal increase in access time. Further, we propose an attribute preserving trace generation methodology which emulates real traces and can generate traces with varying locality. Performanc results reveal that our HSCA scheme results in a 32 percent speedup in average memory access time over a unified nodes cache. Also, HSC outperforms IHARC, a cache for lookup results, with as high as a 10-fold speedup in average memory access time. Two-level mappin further enhances the performance of the base HSCA by up to 13 percent leading to an overall improvement of up to 40 percent over the unified scheme.
Resumo:
We present a unified approach to repulsion in ionic and van der Waals solids based on a compressible-ion/atom model. Earlier studies have shown that repulsion in ionic crystals can be viewed as arising from the compression energy of ions, described by two parameters per ion. Here we obtain the compression parameters of the rare-gas atoms Ne. Ar. Kr and Xe by interpolation using the known parameters of related equi-electronic ions (e.g. Ar from S2-. Cl-, K- and Ca2-). These parameters fit the experimental zero-temperature interatomic distances and compressibilities of the rare-gas crystals satisfactorily. A hightemperature equation of state based on an Einstein model of thermal motions is used to calculate the thermal expansivities, compressibilities and their temperature derivatives for Ar. Kr and Xe. It is argued that an instability at higher temperatures represents the limit to which the solid can be superheated. beyond which sublimation must occur.