129 resultados para Tool wear
Resumo:
We propose a simplified technique for dual wavelength operation of an extended cavity semiconductor laser, and its characterization using electromagnetically induced transparency (EIT). In this laser cavity scheme light beam is made converging before it incidences on the cavity grating. The converging angle of the beam creates two longitudinal oscillating modes of resonating cavity. Frequency separation between the longitudinal modes are measured with the help of beat frequency generation in a photodiode and creating pair of EIT spectra in Rb vapor. The pair of EIT dips that are generated due to dual wavelength of this laser (that is used as control laser) can be used to estimate frequency difference between the generated wavelengths. Width of EIT spectra can be used to estimate line width of individual wavelength components.
Resumo:
Polarization of ligand fluorescence was used to study the binding of 4-methylumbelliferyl beta-D-galactopyranoside (MeUmb-Galp) to Abrus precatorious agglutinin. The binding of the fluorescent sugar to the lectin led to considerable polarization of the MeUmb-Galp fluorescence, which was also quenched by about 30% on binding to the lectin. The binding of the fluorescent sugar was carbohydrate-specific, as evidenced by inhibition of both fluorescence polarization and quenching when lectin was preincubated with lactose. The association constant as determined by fluorescence polarization is 1.42 x 10(4) M-1 at 25 degrees C and is in excellent agreement with those determined by fluorescence quenching (Ka = 1.51 x 10(4) M-1) and equilibrium dialysis (Ka = 1.62 x 10(4) M-1) at 25 degrees C. The numbers of binding sites as determined by fluorescence polarization, quenching and equilibrium dialysis agree very well with one another, n being equal to 2.0 +/- 0.05. The consistency between the association constant value determined by fluorescence polarization, quenching and equilibrium dialysis shows the validity of this approach to study lectin-sugar interaction.
Resumo:
Chips were produced by orthogonal Cutting of cast pure magnesium billet with three different tool rake angles viz., -15 degrees, -5 degrees and +15 degrees on a lathe. Chip consolidation by solid state recycling technique involved cold compaction followed by hot extrusion. The extruded products were characterized for microstructure and mechanical properties. Chip-consolidated products from -15 degrees rake angle tools showed 19% increase in tensile strength, 60% reduction ingrain size and 12% increase in hardness compared to +15 degrees rake chip-consolidated product indicating better chip bonding and grain refinement. Microstructure of the fracture specimen Supports the abovefinding. On the overall, the present work high lights the importance of tool take angle in determining the quality of the chip-consolidated products. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A major concern of embedded system architects is the design for low power. We address one aspect of the problem in this paper, namely the effect of executable code compression. There are two benefits of code compression – firstly, a reduction in the memory footprint of embedded software, and secondly, potential reduction in memory bus traffic and power consumption. Since decompression has to be performed at run time it is achieved by hardware. We describe a tool called COMPASS which can evaluate a range of strategies for any given set of benchmarks and display compression ratios. Also, given an execution trace, it can compute the effect on bus toggles, and cache misses for a range of compression strategies. The tool is interactive and allows the user to vary a set of parameters, and observe their effect on performance. We describe an implementation of the tool and demonstrate its effectiveness. To the best of our knowledge this is the first tool proposed for such a purpose.
Resumo:
Seismic microzonation has generally been recognized as the most accepted tool in seismic hazard assessment and risk evaluation. In general, risk reduction can be done by reducing the hazard, the vulnerability or the value at risk. Since the earthquake hazard can not be reduced, one has to concentrate on vulnerability and value at risk. The vulnerability of an urban area / municipalities depends on the vulnerability of infrastructure and redundancies within the infrastructure. The earthquake risk is the damage to buildings along with number of people that are killed / hurt and the economic losses during the event due to an earthquake with a return period corresponding to this time period. The principal approaches one can follow to reduce these losses are to avoid, if possible, high hazard areas for the siting of buildings and infrastructure, and further ensure that the buildings and infrastructure are designed and constructed to resist expected earthquake loads. This can be done if one can assess the hazard at local scales. Seismic microzonation maps provide the basis for scientifically based decision-making to reduce earthquake risk for Govt./public agencies, private owners and the general public. Further, seismic microzonation carried out on an appropriate scale provides a valuable tool for disaster mitigation planning and emergency response planning for urban centers / municipalities. It provides the basis for the identification of the areas of the city / municipality which are most likely to experience serious damage in the event of an earthquake.
Resumo:
Inventory management (IM) has a decisive role in the enhancement of manufacturing industry's competitiveness. Therefore, major manufacturing industries are following IM practices with the intention of improving their performance. However, the effort to introduce IM in SMEs is very limited due to lack of initiation, expertise, and financial constraints. This paper aims to provide a guideline for entrepreneurs in enhancing their IM performance, as it presents the results of a survey based study carried out for machine tool Small and Medium Enterprises (SMEs) in Bangalore. Having established the significance of inventory as an input, we probed the relationship between IM performance and economic performance of these SMEs. To the extent possible all the factors of production and performance indicators were deliberately considered in pure economic terms. All economic performance indicators adopted seem to have a positive and significant association with IM performance in SMEs. On the whole, we found that SMEs which are IM efficient are likely to perform better on the economic front also and experience higher returns to scale.
Resumo:
In this experimental study, the dry sliding wear and two-body abrasive wear behaviour of graphite filled carbon fabric reinforced epoxy composites were investigated. Carbon fabric reinforced epoxy composite was used as a reference material. Sliding wear experiments were conducted using a pin-on-disc wear tester under dry contact condition. Mass loss was determined as a function of sliding velocity for loads of 25, 50, 75, and 100 N at a constant sliding distance of 6000 m. Two-body abrasive wear experiments were performed under multi-pass condition using silicon carbide (SiC) of 150 and 320 grit abrasive papers. The effects of abrading distance and different loads have been studied. Abrasive wear volume and specific wear rate as a function of applied normal load and abrading distance were also determined. The results show that in dry sliding wear situations, for increased load and sliding velocity, higher wear loss was recorded. The excellent wear characteristics were obtained with carbon-epoxy containing graphite as filler. Especially, 10 wt.% of graphite in carbon-epoxy gave a low wear rate. A graphite surface film formed on the counterface was confirmed to be effective in improving the wear characteristics of graphite filled carbon-epoxy composites. In case of two-body abrasive wear, the wear volume increases with increasing load/abrading distance. Experimental results showed the type of counterface (hardened steel disc and SiC paper) material greatly influences the wear behaviour of the composites. Wear mechanisms of the composites were investigated using scanning electron microscopy. Wear of carbon-epoxy composite was found to be mainly due to a microcracking and fiber fracture mechanisms. It was found that the microcracking mechanism had been caused by progressive surface damage. Further, it was also noticed that carbon-epoxy composite wear is reduced to a greater extent by addition of the graphite filler, in which wear was dominated by microplowing/microcutting mechanisms instead of microcracking.
Resumo:
Wear of etched near-eutectic aluminium silicon alloy slid against a steel ball under ambient is explored. The sliding velocity is kept low (0.01 m/s) and the nominal contact pressure is varied in a 15-40 MPa range. Four stages of wear are identified; ultra mild wear, mild wear, severe wear and post severe oxidative wear. The first transition is controlled by the protrusions of silicon particles, projecting out of the aluminium alloy matrix. Once these protrusions disappear under pressure and sliding, oxidation and bulk energy dissipation mechanisms take over to institute transitions to other stages of wear. The phenomenological characteristics of wear stages are explored using a variety of techniques including nanoindentation, focused ion beam milling, electron microscopy, X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDS) and optical interferometry. (c) 2010 Elsevier B.V. All rights reserved.
Resumo:
Wear studies of engine components of high-speed diesel engines running under various operating conditions are presented. Tests were conducted under controlled conditions over long periods. The results of the various tests are discussed and attempts have been made to examine the effects of engine operating variables and the quality of the lubricating oil on the wear of engine components.
Resumo:
We present a method to perform in situ microrheological measurements on monolayers of soft materials undergoing viscoelastic transitions under compression. Using the combination of a Langmuir trough mounted on the inverted microscope stage of a laser scanning confocal microscope we track the motion of individual fluorescent quantum dots partly dispersed in monolayers spread at the air-water interface. From the calculated mean square displacement of the probe particles and extending a well established scheme of the generalized Stokes-Einstein relation in bulk to the interface we arrive at the viscoelastic modulus for the respective monolayers as a function of surface density. Measurements on monolayers of glassy as well as nonglassy polymers and a standard fatty acid clearly show sensitivity of our technique to subtle variations, in the viscoelastic properties of the highly confined materials under compression. Evidence for possible spatial variations of such viscoelastic properties at a given surface density for the fatty acid monolayer is also provided.
Resumo:
Dry sliding wear behavior of die-cast ADC12 aluminum alloy composites reinforced with short alumina fibers were investigated by using a pin-on-disk wear tester. The Al2O3 fibers were 4 mu m in diameter and were present in volume fractions (T-f)ranging from 0.03 to 0.26, The length of the fiber varied from 40 to 200 mu m. Disks of aluminum-alumina composites were rubbed against a pin of nitrided stainless steel SUS440B with a load of 10 N at a sliding velocity of 0.1 m/s. The unreinforced ADC 12 aluminum alloy and their composites containing low volume fractions of alumina (V-f approximate to 0.05) showed a sliding-distance-dependent transition from severe to mild wear. However, composites containing high volume fractions of alumina ( V-f > 0.05) exhibited only mild wear for all sliding distances. The duration of occurrence of the severe wear regime and the wear rate both decrease with increasing volume fraction. In MMCs the wear rate in the mild wear regime decreases with increase in volume fraction: reaching a minimum value at V-f = 0.09 Beyond V-f = 0.09 the wear rate increasesmarginally. On the other hand, the wear rate of the counterface (steel pin) was found to increase moderately with increase in V-f. From the analysis of wear data and detailed examination of (a) worn surfaces, (b) their cross-sections and (c) wear debris, two modes of wear mechanisms have been identified to be operative, in these materials and these are: (i) adhesive wear in the case of unreinforced matrix material and in MMCs with low Vf and (ii) abrasive wear in the case of MMCs with high V-f. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
Owing to high evolutionary divergence, it is not always possible to identify distantly related protein domains by sequence search techniques. Intermediate sequences possess sequence features of more than one protein and facilitate detection of remotely related proteins. We have demonstrated recently the employment of Cascade PSI-BLAST where we perform PSI-BLAST for many 'generations', initiating searches from new homologues as well. Such a rigorous propagation through generations of PSI-BLAST employs effectively the role of intermediates in detecting distant similarities between proteins. This approach has been tested on a large number of folds and its performance in detecting superfamily level relationships is similar to 35% better than simple PSI-BLAST searches. We present a web server for this search method that permits users to perform Cascade PSI-BLAST searches against the Pfam, SCOP and SwissProt databases. The URL for this server is http://crick.mbu.iisc.ernet.in/similar to CASCADE/CascadeBlast.html.
Resumo:
We present a method to perform in situ microrheological measurements on monolayers of soft materials undergoing viscoelastic transitions under compression. Using the combination of a Langmuir trough mounted on the inverted microscope stage of a laser scanning confocal microscope we track the motion of individual fluorescent quantum dots partly dispersed in monolayers spread at the air-water interface. From the calculated mean square displacement of the probe particles and extending a well established scheme of the generalized Stokes-Einstein relation in bulk to the interface we arrive at the viscoelastic modulus for the respective monolayers as a function of surface density. Measurements on monolayers of glassy as well as nonglassy polymers and a standard fatty acid clearly show sensitivity of our technique to subtle variations, in the viscoelastic properties of the highly confined materials under compression. Evidence for possible spatial variations of such viscoelastic properties at a given surface density for the fatty acid monolayer is also provided.
Resumo:
Wear tests were done in a pin-on-disc machine by sliding MoSi2 pins against hard-steel discs in a normal load range of 5-140 N and a speed of 0.5 m/s under nominally dry conditions in the ambient. The specific wear rate of the pin undergoes two transitions: severe to mild at low load and mild to severe at high load. The mild-wear domain is distinguished by the formation of a protective mechanically mixed layer of steel and its oxides, transferred from the counterface in particulate form. Increasing the hardness by densification and TiB2 reinforcement lowers the specific wear rate and expands the mild-wear load domain. However, even when the volume wear rate is normalised with respect to the real contact area (load/hardness) the non-dimensional wear factor is still seen to decrease with densification and reinforcement. This indicates that fracture toughness may also play an important role in determining the wear-resistance of these materials. The surface coverage on the pin by the mechanically mixed layer increases with densification and reinforcement.
Resumo:
Background:Bacterial non-coding small RNAs (sRNAs) have attracted considerable attention due to their ubiquitous nature and contribution to numerous cellular processes including survival, adaptation and pathogenesis. Existing computational approaches for identifying bacterial sRNAs demonstrate varying levels of success and there remains considerable room for improvement. Methodology/Principal Findings: Here we have proposed a transcriptional signal-based computational method to identify intergenic sRNA transcriptional units (TUs) in completely sequenced bacterial genomes. Our sRNAscanner tool uses position weight matrices derived from experimentally defined E. coli K-12 MG1655 sRNA promoter and rho-independent terminator signals to identify intergenic sRNA TUs through sliding window based genome scans. Analysis of genomes representative of twelve species suggested that sRNAscanner demonstrated equivalent sensitivity to sRNAPredict2, the best performing bioinformatics tool available presently. However, each algorithm yielded substantial numbers of known and uncharacterized hits that were unique to one or the other tool only. sRNAscanner identified 118 novel putative intergenic sRNA genes in Salmonella enterica Typhimurium LT2, none of which were flagged by sRNAPredict2. Candidate sRNA locations were compared with available deep sequencing libraries derived from Hfq-co-immunoprecipitated RNA purified from a second Typhimurium strain (Sittka et al. (2008) PLoS Genetics 4: e1000163). Sixteen potential novel sRNAs computationally predicted and detected in deep sequencing libraries were selected for experimental validation by Northern analysis using total RNA isolated from bacteria grown under eleven different growth conditions. RNA bands of expected sizes were detected in Northern blots for six of the examined candidates. Furthermore, the 5'-ends of these six Northern-supported sRNA candidates were successfully mapped using 5'-RACE analysis. Conclusions/Significance: We have developed, computationally examined and experimentally validated the sRNAscanner algorithm. Data derived from this study has successfully identified six novel S. Typhimurium sRNA genes. In addition, the computational specificity analysis we have undertaken suggests that similar to 40% of sRNAscanner hits with high cumulative sum of scores represent genuine, undiscovered sRNA genes. Collectively, these data strongly support the utility of sRNAscanner and offer a glimpse of its potential to reveal large numbers of sRNA genes that have to date defied identification. sRNAscanner is available from: http://bicmku.in:8081/sRNAscanner or http://cluster.physics.iisc.ernet.in/sRNAscanner/.