49 resultados para THEOREMS
Resumo:
In this paper, a dual of a given linear fractional program is defined and the weak, direct and converse duality theorems are proved. Both the primal and the dual are linear fractional programs. This duality theory leads to necessary and sufficient conditions for the optimality of a given feasible solution. A unmerical example is presented to illustrate the theory in this connection. The equivalence of Charnes and Cooper dual and Dinkelbach’s parametric dual of a linear fractional program is also established.
Resumo:
An important problem regarding pin joints in a thermal environment is addressed. The motivation emerges from structural safety requirements in nuclear and aerospace engineering. A two-dimensional model of a smooth, rigid misfit pin in a large isotropic sheet is considered as an abstraction. The sheet is subjected to a biaxial stress system and far-field unidirectional heat flow. The thermoelastic analysis is complex due to non-linear load-dependent contact and separation conditions at the pin-hole interface and the absence of existence and uniqueness theorems for the class of frictionless thermoelastic contact problems. Identification of relevant parameters and appropriate synthesis of thermal and mechanical variables enables the thermomechanical generalization of pin-joint behaviour. This paper then proceeds to explore the possibility of multiple solutions in such problems, especially interface contact configuration.
Resumo:
Interest in the applicability of fluctuation theorems to the thermodynamics of single molecules in external potentials has recently led to calculations of the work and total entropy distributions of Brownian oscillators in static and time-dependent electromagnetic fields. These calculations, which are based on solutions to a Smoluchowski equation, are not easily extended to a consideration of the other thermodynamic quantity of interest in such systems-the heat exchanges of the particle alone-because of the nonlinear dependence of the heat on a particle's stochastic trajectory. In this paper, we show that a path integral approach provides an exact expression for the distribution of the heat fluctuations of a charged Brownian oscillator in a static magnetic field. This approach is an extension of a similar path integral approach applied earlier by our group to the calculation of the heat distribution function of a trapped Brownian particle, which was found, in the limit of long times, to be consistent with experimental data on the thermal interactions of single micron-sized colloids in a viscous solvent.
Resumo:
The problems of obliquely incident surface water waves against a vertical cliff have been handled in both the cases of water of infinite as well as finite depth by straightforward uses of appropriate Havelock-type expansion theorems. The logarithmic singularity along the shore-line has been incorporated in a direct manner, by suitably representing the Dirac's delta function.
Resumo:
We formulate and prove two versions of Miyachi�s theorem for connected, simply connected nilpotent Lie groups. This allows us to prove the sharpness of the constant 1/4 in the theorems of Hardy and of Cowling and Price for any nilpotent Lie group. These theorems are proved using a variant of Miyachi�s theorem for the group Fourier transform.
Resumo:
We know, from the classical work of Tarski on real closed fields, that elimination is, in principle, a fundamental engine for mechanized deduction. But, in practice, the high complexity of elimination algorithms has limited their use in the realization of mechanical theorem proving. We advocate qualitative theorem proving, where elimination is attractive since most processes of reasoning take place through the elimination of middle terms, and because the computational complexity of the proof is not an issue. Indeed what we need is the existence of the proof and not its mechanization. In this paper, we treat the linear case and illustrate the power of this paradigm by giving extremely simple proofs of two central theorems in the complexity and geometry of linear programming.
Resumo:
We formulate and prove two versions of Miyachi’s theorem for connected, simply connected nilpotent Lie groups. This allows us to prove the sharpness of the constant 1/4 in the theorems of Hardy and of Cowling and Price for any nilpotent Lie group. These theorems are proved using a variant of Miyachi’s theorem for the group Fourier transform.
Resumo:
Given an unweighted undirected or directed graph with n vertices, m edges and edge connectivity c, we present a new deterministic algorithm for edge splitting. Our algorithm splits-off any specified subset S of vertices satisfying standard conditions (even degree for the undirected case and in-degree ≥ out-degree for the directed case) while maintaining connectivity c for vertices outside S in Õ(m+nc2) time for an undirected graph and Õ(mc) time for a directed graph. This improves the current best deterministic time bounds due to Gabow [8], who splits-off a single vertex in Õ(nc2+m) time for an undirected graph and Õ(mc) time for a directed graph. Further, for appropriate ranges of n, c, |S| it improves the current best randomized bounds due to Benczúr and Karger [2], who split-off a single vertex in an undirected graph in Õ(n2) Monte Carlo time. We give two applications of our edge splitting algorithms. Our first application is a sub-quadratic (in n) algorithm to construct Edmonds' arborescences. A classical result of Edmonds [5] shows that an unweighted directed graph with c edge-disjoint paths from any particular vertex r to every other vertex has exactly c edge-disjoint arborescences rooted at r. For a c edge connected unweighted undirected graph, the same theorem holds on the digraph obtained by replacing each undirected edge by two directed edges, one in each direction. The current fastest construction of these arborescences by Gabow [7] takes Õ(n2c2) time. Our algorithm takes Õ(nc3+m) time for the undirected case and Õ(nc4+mc) time for the directed case. The second application of our splitting algorithm is a new Steiner edge connectivity algorithm for undirected graphs which matches the best known bound of Õ(nc2 + m) time due to Bhalgat et al [3]. Finally, our algorithm can also be viewed as an alternative proof for existential edge splitting theorems due to Lovász [9] and Mader [11].
Resumo:
Differential evolution (DE) is arguably one of the most powerful stochastic real-parameter optimization algorithms of current interest. Since its inception in the mid 1990s, DE has been finding many successful applications in real-world optimization problems from diverse domains of science and engineering. This paper takes a first significant step toward the convergence analysis of a canonical DE (DE/rand/1/bin) algorithm. It first deduces a time-recursive relationship for the probability density function (PDF) of the trial solutions, taking into consideration the DE-type mutation, crossover, and selection mechanisms. Then, by applying the concepts of Lyapunov stability theorems, it shows that as time approaches infinity, the PDF of the trial solutions concentrates narrowly around the global optimum of the objective function, assuming the shape of a Dirac delta distribution. Asymptotic convergence behavior of the population PDF is established by constructing a Lyapunov functional based on the PDF and showing that it monotonically decreases with time. The analysis is applicable to a class of continuous and real-valued objective functions that possesses a unique global optimum (but may have multiple local optima). Theoretical results have been substantiated with relevant computer simulations.
Resumo:
Recent simulations of the stretching of tethered biopolymers at a constant speed v (Ponmurugan and Vemparala, 2011 Phys. Rev. E 84 060101(R)) have suggested that for any time t, the distribution of the fluctuating forces f responsible for chain deformation is governed by a relation of the form P(+ f)/ P(- f) = expgamma f], gamma being a coefficient that is solely a function of v and the temperature T. This result, which is reminiscent of the fluctuation theorems applicable to stochastic trajectories involving thermodynamic variables, is derived in this paper from an analytical calculation based on a generalization of Mazonka and Jarzynski's classic model of dragged particle dynamics Mazonka and Jarzynski, 1999 arXiv:cond-\textbackslashmat/9912121v1]. However, the analytical calculations suggest that the result holds only if t >> 1 and the force fluctuations are driven by white rather than colored noise; they further suggest that the coefficient gamma in the purported theorem varies not as v(0.15)T-(0.7), as indicated by the simulations, but as vT(-1).
Resumo:
This article deals with the structure of analytic and entire vectors for the Schrodinger representations of the Heisenberg group. Using refined versions of Hardy's theorem and their connection with Hermite expansions we obtain very precise representation theorems for analytic and entire vectors.
Resumo:
We characterise higher order Riesz transforms on the Heisenberg group and also show that they satisfy dimension-free bounds under some assumptions on the multipliers. Using transference theorems, we deduce boundedness theorems for Riesz transforms on the reduced Heisenberg group and hence also for the Riesz transforms associated to multiple Hermite and Laguerre expansions.
Resumo:
Let k be an integer and k >= 3. A graph G is k-chordal if G does not have an induced cycle of length greater than k. From the definition it is clear that 3-chordal graphs are precisely the class of chordal graphs. Duchet proved that, for every positive integer m, if G m is chordal then so is G(m+2). Brandst `` adt et al. in Andreas Brandsadt, Van Bang Le, and Thomas Szymczak. Duchet- type theorems for powers of HHD- free graphs. Discrete Mathematics, 177(1- 3): 9- 16, 1997.] showed that if G m is k - chordal, then so is G(m+2). Powering a bipartite graph does not preserve its bipartitedness. In order to preserve the bipartitedness of a bipartite graph while powering Chandran et al. introduced the notion of bipartite powering. This notion was introduced to aid their study of boxicity of chordal bipartite graphs. The m - th bipartite power G(m]) of a bipartite graph G is the bipartite graph obtained from G by adding edges (u; v) where d G (u; v) is odd and less than or equal to m. Note that G(m]) = G(m+1]) for each odd m. In this paper we show that, given a bipartite graph G, if G is k-chordal then so is G m], where k, m are positive integers with k >= 4
Resumo:
The vertical uplift resistance of two closely spaced horizontal strip plate anchors has been investigated by using lower and upper bound theorems of the limit analysis in combination with finite elements and linear optimization. The interference effect on uplift resistance of the two anchors is evaluated in terms of a nondimensional efficiency factor (eta(c)). The variation of eta(c) with changes in the clear spacing (S) between the two anchors has been established for different combinations of embedment ratio (H/B) and angle of internal friction of the soil (phi). An interference of the anchors leads to a continuous reduction in uplift resistance with a decrease in spacing between the anchors. The uplift resistance becomes a minimum when the two anchors are placed next to each other without any gap. The critical spacing (S-cr) between the two anchors required to eliminate the interference effect increases with an increase in the values of both H/B and phi. The value of S-cr was found to lie approximately in the range 0.65B-1.5B with H/B = 1 and 11B-14B with H/B = 7 for phi varying from 0 degrees to 30 degrees.
Resumo:
The vertical uplift resistance of two interfering rigid strip plate anchors embedded horizontally at the same level in clay has been examined. The lower and upper bound theorems of the limit analysis in combination with finite-elements and linear optimization have been employed to compute the failure load in a bound form. The analysis is meant for an undrained condition and it incorporates the increase of cohesion with depth. For different clear spacing (S) between the anchors, the magnitude of the efficiency factor (eta c gamma) resulting from the combined components of soil cohesion (c) and soil unit weight (gamma), has been computed for different values of embedment ratio (H/B), the rate of linear increase of cohesion with depth (m) and normalized unit weight (gamma H/c). The magnitude of eta c gamma has been found to reduce continuously with a decrease in the spacing between the anchors, and the uplift resistance becomes minimum for S/B=0. It has been noted that the critical spacing between the anchors required to eliminate the interference effect increases continuously with (1) an increase in H/B, and (2) a decrease in m.