248 resultados para Superconducting transition temperature
Resumo:
Nanodispersed lead in metallic and amorphous matrices was synthesized by rapid solidification processing. The optimum microstructure was tailored to avoid percolation of the particles. With these embedded particles it is possible to study quantitatively the effect of size on the superconducting transition temperature by carrying out quantitative microstructural characterization and magnetic measurements. Our results suggest the role of the matrices in enhancement or depression of superconducting transition temperature of lead. The origin of this difference in behavior with respect to different matrices and sizes is discussed.
Resumo:
We report the single crystal growth of antimony doped Fe1+yTe and Fe1+yTe0.5Se0.5 (Fe1+ySbxTe1-x (x=0, 2%, 5%) and Fe1+yTe0.49Se0.49Sb0.02) by a modified horizontal Bridgman method. Growth parameters are optimized to obtain high quality single crystals. The antiferromagnetic (AFM) transition at T-N = 62.2 K which is a first order transition, shifts to lower temperature on doping in Fe1+yTe. Alternately when the chalcogen site of the ternary compound Fe1+yTe0.5Se0.5 is doped with Sb, superconductivity is preserved albeit the superconducting transition temperature (T-C) falls slightly and a concomitant reduction occurs in superconducting volume fraction. (C) 2013 Elsevier B.V. All rights reserved,
Resumo:
Using a recently proposed Ginzburg-Landau-like lattice free energy functional due to Banerjee et al. (2011) we calculate the fluctuation diamagnetism of high -T-c superconductors as a function of doping, magnetic field and temperature. We analyse the pairing fluctuations above the superconducting transition temperature in the cuprates, ranging from the strong phase fluctuation dominated underdoped limit to the more conventional amplitude fluctuation dominated overdoped regime. We show that a model where the pairing scale increases and the superfluid density decreases with underdoping produces features of the observed magnetization in the pseudogap region, in good qualitative and reasonable quantitative agreement with the experimental data. In particular, we explicitly show that even when the pseudogap has a pairing origin the magnetization actually tracks the superconducting dome instead of the pseudogap temperature, as seen in experiment. We discuss the doping dependence of the `onset' temperature for fluctuation diamagnetism and comment on the role of vortex core -energy jn our model. (C) 2015 Elsevier Inc. All rights reserved.
Resumo:
The perovskites, Y0.75La0.25Ba2Cu3O7 and Y0.75Lu0.25Ba2Cu3O7, show high-Tc superconductivity (with zero resistance at or above 80 K), just as the parent compound YBa2Cu3O7. The Lu-substituted oxide, with the smallest unit-cell parameters, shows the highest Tc besides exhibiting a 100% Meissner effect. Hc1, in these oxides is around 25 mT, but the Hc2, is large. The thermopower of YBa2Cu3O7 shows a sharp transition to zero at the superconducting transition, reinforcing the bulk nature of the superconductivity. Preliminary studies show that ErBa2Cu3O7 and Er0.5Y0.5Ba2Cu3O7 are both high-temperature superconductors with zero resistance in the 82-90 K range.
Resumo:
The intensity of inelastically scattered electrons measured by electron energy loss spectroscopy has been employed to monitor the surface conductivity of YBa2Cu3O6.9 as a function of temperature. The study shows a drastic change in surface conductivity precedes the superconducting transition at 90K. The increase in surface conductivity is accompanied by the formation of dimerized holes in the oxygen derived p-band. This phenomenon is not observed in the non-superconducting YBa2Cu3O6.2.
Resumo:
We have investigated the influence of Fe excess on the electrical transport and magnetism of Fe1+yTe0.5Se0.5 (y=0.04 and 0.09) single crystals. Both compositions exhibit resistively determined superconducting transitions (T-c) with an onset temperature of about 15 K. From the width of the superconducting transition and the magnitude of the lower critical field H-c1, it is inferred that excess of Fe suppresses superconductivity. The linear and nonlinear responses of the ac susceptibility show that the superconducting state for these compositions is inhomogeneous. A possible origin of this phase separation is a magnetic coupling between Fe excess occupying interstitial sites in the chalcogen planes and those in the Fe-square lattice. The temperature derivative of the resistivity d(rho)/d(T) in the temperature range T-c < T < T-a with T-a being the temperature of a magnetic anomaly, changes from positive to negative with increasing Fe. A log 1/T divergence of the resistivity above T-c in the sample with higher amount of Fe suggests a disorder-driven electronic localization.
Resumo:
The sharp increase in microwave power loss (the reverse of what has previously been reported) at the transition temperature in high-Tc superconducting systems such as YBaCu oxide (polycrystalline bulk and thin films obtained by the laser ablation technique) and BiPbSrCaCu oxide is reported. The differences between DC resistivity ( rho ) and the microwave power loss (related to microwave surface resistance) are analysed from the data obtained by a simultaneous measurement set-up. The influence of various parameters, such as preparation conditions, thickness and aging of the sample and the probing frequency (6-18 GHz), on the variation of microwave power loss with temperature is outlined.
Resumo:
High temperature superconductivity in the cuprates remains one of the most widely investigated, constantly surprising and poorly understood phenomena in physics. Here, we describe briefly a new phenomenological theory inspired by the celebrated description of superconductivity due to Ginzburg and Landau and believed to describe its essence. This posits a free energy functional for the superconductor in terms of a complex order parameter characterizing it. We propose that there is, for superconducting cuprates, a similar functional of the complex, in plane, nearest neighbor spin singlet bond (or Cooper) pair amplitude psi(ij). Further, we suggest that a crucial part of it is a (short range) positive interaction between nearest neighbor bond pairs, of strength J'. Such an interaction leads to nonzero long wavelength phase stiffness or superconductive long range order, with the observed d-wave symmetry, below a temperature T-c similar to zJ' where z is the number of nearest neighbors; d-wave superconductivity is thus an emergent, collective consequence. Using the functional, we calculate a large range of properties, e. g., the pseudogap transition temperature T* as a function of hole doping x, the transition curve T-c(x), the superfluid stiffness rho(s)(x, T), the specific heat (without and with a magnetic field) due to the fluctuating pair degrees of freedom and the zero temperature vortex structure. We find remarkable agreement with experiment. We also calculate the self-energy of electrons hopping on the square cuprate lattice and coupled to electrons of nearly opposite momenta via inevitable long wavelength Cooper pair fluctuations formed of these electrons. The ensuing results for electron spectral density are successfully compared with recent experimental results for angle resolved photo emission spectroscopy (ARPES), and comprehensively explain strange features such as temperature dependent Fermi arcs above T-c and the ``bending'' of the superconducting gap below T-c.
Resumo:
We report the temperature evolution of coherently excited acoustic and optical phonon dynamics in the superconducting iron pnictide single crystal Ca(Fe0.944Co0.056)(2)As-2 across the spin density wave transition at T-SDW similar to 85 K and the superconducting transition at T-SC similar to 20 K. The strain pulse propagation model applied to the generation of the acoustic phonons yields the temperature dependence of the optical constants, and longitudinal and transverse sound velocities in the temperature range from 3.1 K to 300 K. The frequency and dephasing times of the phonons show anomalous temperature dependence below T-SC indicating a coupling of these low-energy excitations with the Cooper-pair quasiparticles. A maximum in the amplitude of the acoustic modes at T similar to 170 is seen, attributed to spin fluctuations and strong spin-lattice coupling before T-SDW. Copyright (c) EPLA, 2012
Resumo:
High resolution synchrotron X-ray diffraction, dielectric and Raman scattering study of a scheelite compound Li0.5Ce0.5MoO4 (LCM) revealed that it transforms to a self similar structure above 400 degrees C. The thermally induced isostructural phase transition (IPT), a phenomenon which has rarely been reported in the literature, is preceded by partial softening of the zone centre phonons followed by their hardening above the IPT transition temperature. The high temperature isostructural phase, which exhibits expanded lattice parameters and cell volume, nucleates and grows in the low temperature matrix over a very wide temperature range. Both the phases show nearly identical thermal expansion suggesting similarities in symmetry, unaltered coordination environments around the atoms across the transition.
Resumo:
Crystals of Boc-gamma y(4)(R)Val-Val-OH undergo a reversible first-order single crystal to single crystal phase transition at T-c approximate to 205 K from the orthorhombic space group P22(1)2(1) (Z' = 1) to the monoclinic space group P2(1) (Z' = 2) with a hysteresis of similar to 2.1 K. The low-temperature monoclinic form is best described as a nonmerohedral twin with similar to 50% contributions from its two components. The thermal behavior of the dipeptide crystals was characterized by differential scanning calorimetry experiments. Visual changes in birefringence of the sample during heating and cooling cycles on a hot-stage microscope with polarized light supported the phase transition. Variable-temperature unit cell check measurements from 300 to 100 K showed discontinuity in the volume and cell parameters near the transition temperature, supporting the first-order behavior. A detailed comparison of the room-temperature orthorhombic form with the low-temperature (100 K) monoclinic form revealed that the strong hydrogen-bonding motif is retained in both crystal systems, whereas the non-covalent interactions involving side chains of the dipeptide differ significantly, leading to a small change in molecular conformation in the monoclinic form as well as a small reorientation of the molecules along the ac plane. A rigid-body thermal motion analysis (translation, libration, screw; correlation of translation and libration) was performed to study the crystal entropy. The reversible nature of the phase transition is probably the result of an interplay between enthalpy and entropy: the low-temperature monoclinic form is enthalpically favored, whereas the room-temperature orthorhombic form is entropically favored.
Resumo:
In this paper we present the resistivity data for Pr and Zn codoped compound Y1-xPrxBa2[Cu1-yZny](3)O7-delta with 0 < y < 0.1 and x = 0.0, 0.1 and 0.2. The data is analysed in terms of the superconducting critical temperature T-c, residual resistivity rho(0) and the resistivity slope d rho/dT corresponding to the linear rho-T region. It is found that for x = 0.1 Pr has a minimal influence on the in-plane processes for Zn impurity alone affecting slightly T-c and rho(0). The slope dp/dT becomes larger for 0.03 < y < 0.06 leading to larger depining effect and hence slower fall of T, as a function of y. For x = 0.2 there is a drastic change, rho(0) becomes abnormally large, d rho/dT becomes negative implying absence of depinning and a totally pinned charge stripes. Superconductivity vanishes at y = 0.03. It is concluded that for x = 0.2 Pr converts the system from overdoped to underdoped region leading to the universal superconductor-insulator transition.
Resumo:
Raman bandwidths and bandshapes of some molecular and ionic glasses have been investigated through the glass-transition region. Widths of both polarised and depolarised bands exhibit step-like changes during the glass transition. Molecular and ionic glasses differ with respect to the magnitude and the nature of variations in bandwidths and reorientational times. An attempt has been made to understand the changes in bandwidths around the glass-transition temperature.
Resumo:
An investigation of the phase transitions at high pressures in the alums mentioned in the title has been carried out using EPR of the Cr3+ ion (at the trivalent metal ion site). It is observed that at ambient as well as at high pressures there is a change of slope in the linear variations of the zero field splitting with temperature and that the low temperature phase is characterised by a large number of lines in the EPR spectra. The transition temperature shows a large positive shift with pressure, for both the alums. All these facts are explained in terms of our model of the origin of the trigonal field at the trivalent metal ion site as well as the details of the motion of NH4+ ion.
Resumo:
The possible occurrence of a generalized (1-wave) nonequilibrium superconducting state in a multiband system under certain conditions is studied. In the model the radiation field causes interband mixing, and phonons of an appropriate mode (branch) are involved in the interband scattering of electrons of two conduction bands of the system. The strength of the generalized 1-wave pairing interaction between quasiparticles belonging to new radiation admixed states depends on the density (n o/V) of quanta in the system. The coupling constant has the form Xl= AiB(n o/V)/[C + B(no/V)], where A1, B, and C are parameters. For C > B(n0/V), the transition temperature T1* increases with (no/V) in the initial stages. It levels off with higher power. With further increase of power, the transition temperature is expected to drop sharply due to heating effects which cause pair breaking. Estimates show that p-wave (triplet state) pairing may be possible under radiation-induced nonequilibrium situations in appropriate systems. Estimates for lifetimes of various processes quasiparticle, phonon, pair relaxation, and photon-induced mixing) show that the coherence required for the mixing and pairing effects will be maintained for the temperature range and photon density considered.