123 resultados para Spatial Chaos
Resumo:
The similar to 2500 km long Himalayan arc has experienced three large to great earthquakes of M-w 7.8 to 8.4 during the past century, but none produced surface rupture. Paleoseismic studies have been conducted during the last decade to begin understanding the timing, size, rupture extent, return period, and mechanics of the faulting associated with the occurrence of large surface rupturing earthquakes along the similar to 2500 km long Himalayan Frontal Thrust (HFT) system of India and Nepal. The previous studies have been limited to about nine sites along the western two-thirds of the HFT extending through northwest India and along the southern border of Nepal. We present here the results of paleoseismic investigations at three additional sites further to the northeast along the HFT within the Indian states of West Bengal and Assam. The three sites reside between the meizoseismal areas of the 1934 Bihar-Nepal and 1950 Assam earthquakes. The two westernmost of the sites, near the village of Chalsa and near the Nameri Tiger Preserve, show that offsets during the last surface rupture event were at minimum of about 14 m and 12 m, respectively. Limits on the ages of surface rupture at Chalsa (site A) and Nameri (site B), though broad, allow the possibility that the two sites record the same great historical rupture reported in Nepal around A.D. 1100. The correlation between the two sites is supported by the observation that the large displacements as recorded at Chalsa and Nameri would most likely be associated with rupture lengths of hundreds of kilometers or more and are on the same order as reported for a surface rupture earthquake reported in Nepal around A.D. 1100. Assuming the offsets observed at Chalsa and Nameri occurred synchronously with reported offsets in Nepal, the rupture length of the event would approach 700 to 800 km. The easternmost site is located within Harmutty Tea Estate (site C) at the edges of the 1950 Assam earthquake meizoseismal area. Here the most recent event offset is relatively much smaller (<2.5 m), and radiocarbon dating shows it to have occurred after A.D. 1100 (after about A.D. 1270). The location of the site near the edge of the meizoseismal region of the 1950 Assam earthquake and the relatively lesser offset allows speculation that the displacement records the 1950 M-w 8.4 Assam earthquake. Scatter in radiocarbon ages on detrital charcoal has not resulted in a firm bracket on the timing of events observed in the trenches. Nonetheless, the observations collected here, when taken together, suggest that the largest of thrust earthquakes along the Himalayan arc have rupture lengths and displacements of similar scale to the largest that have occurred historically along the world's subduction zones.
Resumo:
The effect of using a spatially smoothed forward-backward covariance matrix on the performance of weighted eigen-based state space methods/ESPRIT, and weighted MUSIC for direction-of-arrival (DOA) estimation is analyzed. Expressions for the mean-squared error in the estimates of the signal zeros and the DOA estimates, along with some general properties of the estimates and optimal weighting matrices, are derived. A key result is that optimally weighted MUSIC and weighted state-space methods/ESPRIT have identical asymptotic performance. Moreover, by properly choosing the number of subarrays, the performance of unweighted state space methods can be significantly improved. It is also shown that the mean-squared error in the DOA estimates is independent of the exact distribution of the source amplitudes. This results in a unified framework for dealing with DOA estimation using a uniformly spaced linear sensor array and the time series frequency estimation problems.
Resumo:
The paper analyses the effect of spatial smoothing on the performance of MUSIC algorithm. In particular, an attempt is made to bring out two effects of the smoothing: (i) reduction of effective correlation between the impinging signals and (ii) reduction of the noise perturbations due to finite data. For the case of a two-source scenario with widely spaced sources, simplified expressions for improvement with smoothing have been obtained which provide more insight into the impact of smoothing. Specifically, a pessimistic estimate of the minimum value of source correlation beyond which the smoothing is beneficial is brought out by these expressions. Computer simulations are used to demonstrate the usefulness of the analytical results.
Resumo:
The nuclear magnetic resonance imaging technique has been used to obtain images of different transverse and vertical sections in groundnut and sunflower seeds. Separate images have been obtained for oil and water components in the seeds. The spatial distribution of oil and water inside the seed has been obtained from the detailed analysis of the images. In the immature groundnut seeds obtained commercially, complementary oil and water distributions have been observed. Attempts have been made to explain these results.
Resumo:
Free-living amoebae of the cellular slime mould Dictyostelium discoideum aggregate when starved and give rise to a long and thin multicellular structure, the slug. The slug resembles a metazoan embryo, and as with other embryos it is possible to specify a fate map. In the case of Dictyostelium discoideum the map is especially simple: cells in the anterior fifth of the slug die and form a stalk while the majority of those in the posterior differentiate into spores. The genesis of this anterior-posterior distinction is the subject of our review. In particular, we ask: what are the relative roles of individual pre-aggregative predispositions and post-aggregative position in determining cell fate? We review the literature on the subject and conclude that both factors are important. Variations in nutritional status, or in cell cycle phase at starvation, can bias the probability that an amoeba differentiates into a stalk cell or a spore. On the other hand, isolates, or slug fragments, consisting of only prestalk cells or only prespore cells can regulate so as to result in a normal range of both cell types. We identify three levels of control, each being responsible for guiding patterning in normal development: (i) 'coin tossing', whereby a cell autonomously exhibits a preference for developing along either the stalk or the spore pathway with relative probabilities that can be influenced by the environment; (ii) 'chemical kinetics', whereby prestalk and prespore cells originate from undifferentiated amoebae on a probabilistic basis but, having originated, interact (e.g. via positive and negative feedbacks), and the interaction influences the possibility of conversion of one cell type into the other, and (iii) 'positional information', in which the spatial distribution of morphogens in the slug influences the pathway of differentiation. In the case of possibilities (i) and (ii), sorting out of like cell types leads to the final spatial pattern. In the case of possibility (iii), the pattern arises in situ.
Resumo:
Starved amoebae of D. discoideum aggregate and give rise to a long and thin multicellular structure called the slug. The cells within the slug eventually differentiate according to a simple anterior/posterior dichotomy. This motivates a search for gradients of putative morphogens along its axis. Calcium may be one such morphogen. On the basis of observations made by using the calcium-sensitive fluorescent dyes fura-2 and chlortetracyline, we report that there are spatial gradients in cytoplasmic and sequestered calcium in the slug. Anteriorly located and genetically defined prestalk cells (ecmA/pstA, ecmB/pstAB) contain significantly higher levels of calcium than the prespore cells in the posterior. However, the proportion of 'calcium-rich' cells in the slug is greater than that of the subset of prestalk cells defined by the expression of the ecmA or ecmB genes.
Resumo:
We have made careful counts of the exact number of spore, stalk and basal disc cells in small fruiting bodies of Dictyostelium discoideum (undifferentiated amoebae are found only rarely and on average their fraction is 4.96 x 10(-4)). (i) Within aggregates of a given size, the relative apportioning of amoebae to the main cell types occurs with a remarkable degree of precision. In most cases the coefficient of variation (c.v.) in the mean fraction of cells that form spores is within 4.86%. The contribution of stalk and basal disc cells is highly variable when considered separately (c.v.'s upto 25% and 100%, respectively), but markedly less so when considered together. Calculations based on theoretical models indicate that purely cell-autonomous specification of cell, fate cannot account for die observed accuracy of proportioning. Cell-autonomous determination to a prestalk or prespore condition followed by cell type interconversion, and stabilised by feedbacks, suffices to explain the measured accuracy. (ii) The fraction of amoebae that differentiates into spores increases monotonically with the total number of cells. This fraction rises from an average of 73.6% for total cell numbers below 30 and reaches 86.0% for cell numbers between 170 and 200 (it remains steady thereafter at around 86%). Correspondingly, the fraction of amoebae differentiating into stalk or basal disc decreases viith total size. These trends are in accordance with evolutionary expectations and imply that a mechanism for sensing the overall size of the aggregate also plays an essential role in the determination of cell-type proportions.
Resumo:
Realizing the importance of aerosol characterization and addressing its spatio-temporal heterogeneities over Bay of Bengal (BoB), campaign mode observations of aerosol parameters were carried out using simultaneous cruise, aircraft and land-based measurements during the Winter Integrated Campaign for Aerosols gases and Radiation Budget (W_ICARB). Under this, airborne measurements of total and hemispheric backscatter coefficients were made over several regions of coastal India and eastern BoB using a three wavelength integrating nephelometer. The measurements include high resolution multi-level (ML) sorties for altitude profiles and bi-level (BL) sorties for spatial gradients within and above the Marine Atmospheric Boundary Layer (MABL) over BoB. The vertical profiles of the scattering coefficients are investigated in light of the information on the vertical structure of the atmospheric stability, which was derived from the collocated GPS (Global Positioning System) aided radiosonde ascents. In general, the altitude profiles revealed that the scattering coefficient remained steady in the convectively well-mixed regions and dropped off above the MABL. This decrease was quite rapid off the Indian mainland, while it was more gradual in the eastern BoB. Investigation on horizontal gradients revealed that the scattering coefficients over northern BoB are 3 to 4 times higher compared to that of central BoB within and above the MABL. A north-south gradient in scattering coefficients is observed over Port Blair in the eastern BoB, with values decreasing from south to north, which is attributed to the similar gradient in the surface wind speed, which can be replicated in the sea salt abundance. The gradients are parameterized using best-fit analytical functions.
Resumo:
The interest in low bit rate video coding has increased considerably. Despite rapid progress in storage density and digital communication system performance, demand for data-transmission bandwidth and storage capacity continue to exceed the capabilities of available technologies. The growth of data-intensive digital audio, video applications and the increased use of bandwidth-limited media such as video conferencing and full motion video have not only sustained the need for efficient ways to encode analog signals, but made signal compression central to digital communication and data-storage technology. In this paper we explore techniques for compression of image sequences in a manner that optimizes the results for the human receiver. We propose a new motion estimator using two novel block match algorithms which are based on human perception. Simulations with image sequences have shown an improved bit rate while maintaining ''image quality'' when compared to conventional motion estimation techniques using the MAD block match criteria.
Resumo:
The statistical performance analysis of ESPRIT, root-MUSIC, minimum-norm methods for direction estimation, due to finite data perturbations, using the modified spatially smoothed covariance matrix, is developed. Expressions for the mean-squared error in the direction estimates are derived based on a common framework. Based on the analysis, the use of the modified smoothed covariance matrix improves the performance of the methods when the sources are fully correlated. Also, the performance is better even when the number of subarrays is large unlike in the case of the conventionally smoothed covariance matrix. However, the performance for uncorrelated sources deteriorates due to an artificial correlation introduced by the modified smoothing. The theoretical expressions are validated using extensive simulations. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Several doped 6H hexagonal ruthenates, having the general formula Ba3MRu2O9, have been studied over a significant period of time to understand the unusual magnetism of ruthenium metal. However, among them, the M = Fe compound appears different since it is observed that unlike others, the 3d Fe ions and 4d Ru ions can easily exchange their crystallographic positions, and as a result many possible magnetic interactions become realizable. The present study involving several experimental methods on this compound establishes that the magnetic structure of Ba3FeRu2O9 is indeed very different from all other 6H ruthenates. Local structural study reveals that the possible Fe/Ru site disorder further extends to create local chemical inhomogeneity, affecting the high-temperature magnetism of this material. There is a gradual decrease of Fe-57 Mossbauer spectral intensity with decreasing temperature (below 100 K), which reveals that there is a large spread in the magnetic ordering temperatures, corresponding to many spatially inhomogeneous regions. However, finally at about 25 K, the whole compound is found to take up a global glasslike magnetic ordering.
Resumo:
Background: Depression and anxiety have been linked to serious cardiovascular events in patients with preexisting cardiac illness. A decrease in cardiac vagal function as suggested by a decrease in heart rate (HR) variability has been linked to sudden death. Methods: We compared LLE and nonlinearity scores of the unfiltered (UF) and filtered time series (very low, low, and high frequency; VLF, LF and HF) of HR between patients with depression (n = 14) and healthy control subjects (n = 18). Results: We found significantly lower LLE of the unfiltered series in either posture, and HF series in patients with major depression in supine posture (p < .002). LLE (LF/UF), which may indicate relative sympathetic activity was also significantly higher in supine and standing postures in patients (p < .05); LF/HF (LLE) was also higher in patients (p < .05) in either posture. Conclusions: These findings suggest that major depression is associated with decreased cardiac vagal function and a relative increase in sympathetic function, which may be related to the higher risk of cardiovascular mortality, in this group and illustrates the usefulness of nonlinear measures of chaos such as LLE in addition to the commonly used spectral measures.
Resumo:
We drive a d-dimensional Heisenberg magnet using an anisotropic current. The continuum Langevin equation is analysed using a dynamical renormalization group and numerical simulations. We discover a rich steady-state phase diagram, including a critical point in a new nonequilibrium universality class, and a spatiotemporally chaotic phase. The latter may be controlled in a robust manner to target spatially periodic steady states with helical order.