154 resultados para Scattering loss
Resumo:
This paper deals with the interpretation of the discrete-time optimal control problem as a scattering process in a discrete medium. We treat the discrete optimal linear regulator, constrained end-point and servo and tracking problems, providing a unified approach to these problems. This approach results in an easy derivation of the desired results as well as several new ones.
Resumo:
With the liberalisation of electricity market it has become very important to determine the participants making use of the transmission network.Transmission line usage computation requires information of generator to load contributions and the path used by various generators to meet loads and losses. In this study relative electrical distance (RED) concept is used to compute reactive power contributions from various sources like generators, switchable volt-amperes reactive(VAR) sources and line charging susceptances that are scattered throughout the network, to meet the system demands. The transmission line charge susceptances contribution to the system reactive flows and its aid extended in reducing the reactive generation at the generator buses are discussed in this paper. Reactive power transmission cost evaluation is carried out in this study. The proposed approach is also compared with other approaches viz.,proportional sharing and modified Y-bus.Detailed case studies with base case and optimised results are carried out on a sample 8-bus system. IEEE 39-bus system and a practical 72-bus system, an equivalent of Indian Southern grid are also considered for illustration and results are discussed.
Resumo:
X-ray powder diffraction along with differential thermal analysis carried out on the as-quenched samples in the 3BaO-3TiO(2)-B2O3 system confirmed their amorphous and glassy nature, respectively. The dielectric constants in the 1 kHz-1 MHz frequency range were measured as a function of temperature (323-748 K). The dielectric constant and loss were found to be frequency independent in the 323-473 K temperature range. The temperature coefficient of dielectric constant was estimated using Havinga's formula and found to be 16 ppm K-1. The electrical relaxation was rationalized using the electric modulus formalism. The dielectric constant and loss were 17 +/- 0.5 and 0.005 +/- 0.001, respectively at 323 K in the 1 kHz-1 MHz frequency range which may be of considerable interest to capacitor industry.
Resumo:
Bulk Ge15Te83Si2 glass has been found to exhibit memory-type switching for 1 mA current with a threshold electric field of 7.3 kV/cm. The electrical set and reset processes have been achieved with triangular and rectangular pulses, respectively, of 1 mA amplitude. In situ Raman scattering studies indicate that the degree of disorder in Ge15Te83Si2 glass is reduced from off to set state. The local structure of the sample under reset condition is similar to that in the off state. The Raman results are consistent with the switching results which indicate that the Ge15Te83Si2 glass can be set and reset easily. (C) 2007 American Institute of Physics.
Resumo:
Temperature-dependent Raman spectra of TbMnO3 from 5 to 300 K in the spectral range of 200-1525 cm(-1) show five first-order Raman allowed modes and two high frequency modes. The intensity ratio of the high frequency Raman band to the corresponding first-order Raman mode is nearly constant and high (similar to 0.6) at all temperatures, suggesting an orbiton-phonon mixed nature of the high frequency mode. One of the first-order phonon modes shows anomalous softening below T-N (similar to 46 K), suggesting a strong spin-phonon coupling.
Resumo:
The self-diffusion properties of pure CH4 and its binary mixture with CO2 within MY zeolite have been investigated by combining an experimental quasi-elastic neutron scattering (QENS) technique and classical Molecular dynamics simulations. The QENS measurements carried out at 200 K led to an unexpected self-diffusivity profile for Pure CH4 with the presence of a maximum for a loading of 32 CH4/unit cell, which was never observed before for the diffusion of apolar species in azeolite system With large windows. Molecular dynamics simulations were performed using two distinct microscopic models for representing the CH4/NaY interactions. Depending on the model, we are able to fairly reproduce either the magnitude or the profile of the self-diffusivity.Further analysis allowed LIS to provide some molecular insight into the diffusion mechanism in play. The QENS measurements report only a slight decrease of the self-diffusivity of CH4 in the presence of CO2 when the CO2 loading increases. Molecular dynamics simulations successfully capture this experimental trend and suggest a plausible microscopic diffusion mechanism in the case of this binary mixture.
Resumo:
We report the results of an in situ small-angle x-ray scattering (SAXS) study of the aggregation of gold nanoparticles formed by an interfacial reaction at the toluene-water interface. The SAXS data provide a direct evidence for aggregate formation of nanoparticles having 1.3 nm gold core and an organic shell that gives a core-core separation of about 2.5 nm. Furthermore, the nanoparticles do not occupy all the cites of 13-member cluster. This occupancy decreases with reaction time and indicate reorganization of the clusters that generates planner disklike structures. A gradual increase in fractal dimension from 1.82 to 2.05 also indicate compactification of cluster aggregation with reaction time, the final exponent being close to 2 expected for disklike aggregates.
Resumo:
We report interesting anomalies in the temperature dependent Raman spectra of FeSe0.82 measured from 3 K to 300 K in the spectral range from 60 to 1800 cm(-1) and determine their origin using complementary first-principles density functional calculations. A phonon mode near 100 cm-1 exhibits a sharp increase by similar to 5% in the frequency below a temperature T-s (similar to 100 K) attributed to strong spin-phonon coupling and onset of short-range antiferromagnetic order. In addition, two high frequency modes are observed at 1350 cm-1 and 1600 cm-1, attributed to electronic Raman scattering from (x(2)-y(2)) to xz/yz d-orbitals of Fe. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Novel switching sequences can be employed in spacevector-based pulsewidth modulation (PWM) of voltage source inverters. Differentswitching sequences are evaluated and compared in terms of inverter switching loss. A hybrid PWM technique named minimum switching loss PWM is proposed, which reduces the inverter switching loss compared to conventional space vector PWM (CSVPWM) and discontinuous PWM techniques at a given average switching frequency. Further, four space-vector-based hybrid PWM techniques are proposed that reduce line current distortion as well as switching loss in motor drives, compared to CSVPWM. Theoretical and experimental results are presented.
Resumo:
The polarization of radiation by scattering on an atom embedded in combined external quadrupole electric and uniform magnetic fields is studied theoretically. Limiting cases of scattering under Zeeman effect, and Hanle effect in weak magnetic fields are discussed. The theory is general enough to handle scattering in intermediate magnetic fields (Hanle-Zeeman effect) and for arbitrary orientation of magnetic field. The quadrupolar electric field produces asymmetric line shifts, and causes interesting level-crossing phenomena either in the absence of an ambient magnetic field, or in its presence. It is shown that the quadrupolar electric field produces an additional depolarization in the Q/I profiles and rotation of the plane of polarization in the U/I profile over and above that arising from magnetic field itself. This characteristic may have a diagnostic potential to detect steady-state and time-varying electric fields that surround radiating atoms in solar atmospheric layers. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
We report the quasielastic neutron scattering (QENS) and molecular dynamics (MD) investigations into diffusion of pentane isomers in zeolite NaY. The molecular cross section perpendicular to the long molecular axis varies for the three isomers while the mass and the isomer-zeolite interaction remains essentially unchanged. Both QENS and MD results show that the branched isomers neopentane and isopentane have higher self-diffusivities as compared with n-pentane at 300 K in NaY zeolite. This result provides direct experimental evidence for the existence of nonmonotonic, anomalous dependence of self-diffusivity on molecular diameter known as the levitation effect. The energetic barrier at the bottleneck derived from MD simulations exists for n-pentane which lies in the linear regime while no such barrier is seen for neopentane which is located clearly in the anomalous regime.Activation energy is in the order E-a(n-pentane)>E-a(isopentane)>E-a(neopentane) consistent with the predictions of the levitation effect. In the liquid phase, it is seen thatD(n pentane)>D(isopentane)>D(neopentane) and E-a(n-pentane)< E-a(isopentane)< E-a(neopentane). Intermediate scattering function for small wavenumbers obtained from MD follows a single exponential decay for neopentane and isopentane. For n-pentane, a single exponential fit provides a poor fit especially at short times. Cage residence time is largest for n-pentane and lowest for neopentane. For neopentane, the width of the self-part of the dynamic structure factor shows a near monotonic decrease with wavenumber. For n-pentane a minimum is seen near k=0.5 A degrees(-1) suggesting a slowing down of motion around the 12-ring window, the bottleneck for diffusion. Finally, the result that the branched isomer has a higher diffusivity as compared with the linear analog is at variation from what is normally seen.
Resumo:
Krishnan's reciprocity theorem in colloid optics, ρ{variant}u=1+l/ρ{variant}h/1+1/ρ{variant}v is generalised for the case when the scattering medium is subjected to an external orienting field. It is shown theoretically that a general relation of the type IBA=I′AB results in this case, where IBA is the intensity of the component of the scattered light having its electric vector inclined at an angle B to the vertical with the incident light polarised at an angle A to the vertical, the external field direction being parallel to the incident beam. I′AB is the corresponding intensity with the magnetic field parallel of the scattered ray. Experimental verification of the above generalisation is also given.
Resumo:
In this paper the classical problem of water wave scattering by two partially immersed plane vertical barriers submerged in deep water up to the same depth is investigated. This problem has an exact but complicated solution and an approximate solution in the literature of linearised theory of water waves. Using the Havelock expansion for the water wave potential, the problem is reduced here to solving Abel integral equations having exact solutions. Utilising these solutions,two sets of expressions for the reflection and transmission coefficients are obtained in closed forms in terms of computable integrals in contrast to the results given in the literature which,involved six complicated integrals in terms of elliptic functions. The two different expressions for each coefficient produce almost the same numerical results although it has not been possible to prove their equivalence analytically. The reflection coefficient is depicted against the wave number in a number of figures which almost coincide with the figures available in the literature wherein the problem was solved approximately by employing complementary approximations. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We present a simplified yet analytical formulation of the carrier backscattering coefficient for zig-zag semiconducting single walled carbon nanotubes under diffusive regime. The electron-phonon scattering rate for longitudinal acoustic, optical, and zone-boundary phonon emissions for both inter- and intrasubband transition rates have been derived using Kane's nonparabolic energy subband model.The expressions for the mean free path and diffusive resistance have been formulated incorporating the aforementioned phonon scattering. Appropriate overlap function in Fermi's golden rule has been incorporated for a more general approach. The effect of energy subbands on low and high bias zones for the onset of longitudinal acoustic, optical, and zone-boundary phonon emissions and absorption have been analytically addressed. 90% transmission of the carriers from the source to the drain at 400 K for a 5 mu m long nanotube at 105 V m(-1) has been exhibited. The analytical results are in good agreement with the available experimental data. (c) 2010 American Institute of Physics.