96 resultados para STARS: CHEMICALLY PECULIAR
Resumo:
Fine powders consisting of 0.1–0.5 μm size crystallites of CaTiO3 are prepared at 150–200°C by the hydrothermal method starting from hydrated titania gel and reactive calcium oxide suspended as an aqueous slurry in an autoclave. The resulting high-purity CaTiO3 is characterised by TEM, X-ray powder diffraction, chemical analyses and sintering characteristics. The hydrothermally prepared CaTiO3 powders are sinterable to high-density ceramics below 1400°C. The dc conductivity behaviour of the chemically reduced ceramics is presented.
Resumo:
ZnS:Cu, Br powder EL phosphors showed 6-line EPR signal at 25°C whose intensity increases with Cu content and on annealing in Zn-vapour. The signal arises from native Mn impurity. The starting material does not show any EPR signal since Mn2+ acts as an affinity potential well for a hole in ZnS, forming Mn3+ - a chemically uncommon situation in sulfides. In doped ZnS, holes are trapped at Cu such that Mn2+ persists. Deterioration of EL brightness is accompanied by the decrease in EPR signal intensity due to field assisted hole transference to Mn2+. Intentional addition of Mn in ZnS:Cu, Br decreases the brightness and shortens life time. Stable phosphors require ZnS with Mn content less than 1014 cm−3.
Resumo:
Growing crystals with selected structure and preferred orientations oil seed substrates is crucial for a wide variety of applications. Although epitaxial or textured film growth of a polymorph whose structure resembles the seed crystal structure is well-known, growing oriented nanocrystal arrays or more than one polymorph, selectable one at a time, from the same seed has not been realized. Here, we demonstrate for the first time the exclusive growth of oriented nanocrystal arrays of two titania polymorphs from a titanate crystal by chemically activating respective polymorph-mimicking crystallographic facets in the seed. The oriented titania nanocrystal arrays exhibit significantly higher photocatalytic activity than randomly oriented polymorphs. Our approach of chemically sculpting oriented nanocrystal polymorph arrays could be adapted to other materials systems to obtain novel properties.
Resumo:
e argue that the extraordinary fact that all three known millisecond pulsars are very close to the galactic plane implies that there must be ~100 potentially observable millisecond pulsars within ~4 kpc from the Sun. Our other main conclusion is that the dipole magnetic fields or old neutron stars probably saturate around 5 x 108 gauss.
Resumo:
Detailed ESR investigations of Mn2+ substituting for Ca2+ in Ca2Sr(C2H5COO)6, (DSP) and Ca2Pb(C2H5COO)6, (DLP) and Ca2Ba(C2H5COO)6, (DBP), in single crystals and powders, over the temperature range from 300°C to -180°C have been carried out to study the successive phase transitions in these compounds. Spectra have been analyzed in terms of axial spin Hamiltonians and the temperature dependences of the parameters studied. Across the I-II transition, new physically and chemically inequivalent sites appear indicating the disappearance of the diad axes on which the propionate groups are located, bringing out the connection between the motional states of the propionate groups and the occurrence of ferroelectricity. The II-III transition also causes chemically inequivalent sites to develop, indicating that the transitions may not be isomorphous as believed previously. Similarities and dissimilarities of the ESR spectra of DLP, DSP and DBP are discussed in relation to the phase transitions.
Resumo:
Detailed ESR investigations of Mn2+ substituting for Ca2+ in Ca2Sr(C2H5COO)6 (DSP), Ca2Pb(C2H5COO)6 (DLP) and Ca2Ba(C2H5COO)6 (DBP), in single crystals and powders, over the temperature range from 200°C to -180°C have been carried out to study the successive phase transitions in these compounds. (DSP: [Tetragonal] ← 8.5°C → [tetragonal, ferroelectric] [tetragonal] ← -169°C → [monoclinic, ferroelectric]; DLP : [tetragonal] ← 60°C → [tetragonal, ferroelectric] ← -71.5°C → [monoclinic, ferroelectric]; [Cubic] ← -6°C → [orthorhombic] ← -75°C → [?]). Spectra have been analysed in terms of axial spin Hamiltonians and the temperature dependences of the parameters studied. In DSP and DLP across the I ↔ II transition, new physically and chemically inequivalent sites appear indicating the disappearance of the diad axes on which the propionate groups are located, bringing out the connection between the motional states of the propionate groups and the occurence of ferroelectricity. The II ↔ III transition also causes chemically inequivalent sites to develop, indicating that the transitions may not be isomorphous as believed previously. In DBP, the -6°C transition leads to (i) a doubling of both physically and chemically inequivalent sites (ii) a small (150 G at -6°C to 170 G at -8°C), but abrupt change in the magnitude of the zero-field splitting tensor D, and (iii) displacements of the orientations of the D tensors. Results are interpreted in terms of alternate rotations of the oxygen octahedra, showing participation of the carboxyl oxygens in the transition. No drastic changes in the parameters occur across the -75°C transition consistent with its second order nature. Similarities and dissimilarities of the ESR spectra of the three compounds in relation to the phase transitions, are discussed.
Resumo:
The unified structure of steady, one-dimensional shock waves in argon, in the absence of an external electric or magnetic field, is investigated. The analysis is based on a two-temperature, three-fluid continuum approach, using the Navier—Stokes equations as a model and including non-equilibrium collisional as well as radiative ionization phenomena. Quasi charge neutrality and zero velocity slip are assumed. The integral nature of the radiative terms is reduced to analytical forms through suitable spectral and directional approximations. The analysis is based on the method of matched asymptotic expansions. With respect to a suitably chosen small parameter, which is the ratio of atom-atom elastic collisional mean free-path to photon mean free-path, the following shock morphology emerges: within the radiation and electron thermal conduction dominated outer layer occurs an optically transparent discontinuity which consists of a chemically frozen heavy particle (atoms and ions) shock and a collisional ionization relaxation layer. Solutions are obtained for the first order with respect to the small parameter of the problem for two cases: (i) including electron thermal conduction and (ii) neglecting it in the analysis of the outer layer. It has been found that the influence of electron thermal conduction on the shock structure is substantial. Results for various free-stream conditions are presented in the form of tables and figures.
Resumo:
A new guanidino amine has been isolated from Lathyrus sativus seedlings and chararterized as homoagmatine on the basis of various physico-chemical criteria including IR spectrum and comparison with that chemically synthesized. Homoagmatine is accumulated in the embryos axis while its precursor, homoarginine, is lost from the cotyledons. However, there was a progressive increase in homoarginine content of the embryo axis during development. Since the amine content of the whole seedlings corresponded to nearly 20–25 % of net decrease in homoarginine levels, it is concluded that the catabolism of homoarginine through homoagmatine represents a major pathway of metabolism of the arnino acid.
Resumo:
Dielectric constants and loss tangents of As-Se glasses have been measured between 300 K and the respective glass transition temperatures and between 1 kHz and 20 kHz. The variation of dielectric constants has been interpreted in terms of both heteropolarity of bonds and average bond energies employing a chemically ordered network model. Various contributions to total molar polarizations have been estimated. Rapid rise of loss tangent in the vicinity of glass transitions has been interpreted in terms of rapid increase; of d.c. conductivity.
Resumo:
IR absorption spectra of As-Se glasses have been studied over a wide range of compositions. Various two-phonon, multiphonon (combination tones) and impurity absorptions have been identified. Compositional variation of relative band intensities has been explained in terms of the chemically ordered network model.
Resumo:
ESR investigations are reported in single crystals of copper diethyldithiophosphate, magnetically diluted with the corresponding diamagnetic nickel complex. The spectrum at normal gain shows hyperfine components from 63Cu, 65Cu, and 31P nuclei. At much higher gain, hyperfine interaction from 33S nuclei in the ligand is detected. The spin Hamiltonian parameters relating to copper show tetragonal symmetry. The measured parameters are g = 2.085, g =2.025, A63Cu = 149.6 × 10−4 cm−1, A65Cu = 160.8 × 10−4 cm−1, BCu = 32.5 × 10−4 cm−1 and QCu 5.5 × 10−4cm−1. The 31P interaction is isotropic with a coupling constant AP = 9.6 × 10−4 cm−1. Angular variation of the 33S lines shows two different hyperfine tensors indicating the presence of two chemically inequivalent Cu S bonds. The experimentally determined hyperfine constants are A =34.9×10−4 cm−1, B =26.1×10−4 cm−1, A =60.4×10−4 cm−1, B =55.5×10−4 cm−1. The hyperfine parameters show that the hybridization of the ligand orbitals is very sensitive to the symmetry around the ligand. The g values and Cu hyperfine parameters are not much affected by the distortions occurring in the ligand. The energies of the d-d transitions are determined by optical absorption measurements on Cu diethyldithiophosphate in solution. Using the spin Hamiltonian parameters together with optical absorption results, the MO parameters for the complex are calculated. It is found that in addition to the bond, the bonds are also strongly covalent. ©1973 The American Institute of Physics
Resumo:
NQR frequencies in 3,4-dichlorophenol are investigated in the temperature range 77 K to room temperature. Two resonances have been observed throughout the temperature range, corresponding to the two chemically inequivalent chlorine sites. Using Bayer's theory and Brown's method torsional frequencies and their temperature dependence in this range are estimated.
Resumo:
Zeeman (35Cl) NQR studies in polycrystalline samples of 4,6-dichloropyrimidine and 6 chloro 2,4 dimethoxypyrimidine show that the asymmetry at the four chemically inequivalent chlorine sites in the former is about 10%, while in the latter (one line) the asymmetry is almost zero. Using a valence-bond picture, C-Cl bonds in 4,6-dichloropyrimidine have been characterised, and the results are also compared with those in a corresponding benzene compound using a simple molecular orbital calculation. The axial symmetry of C-Cl bond in the second compound has been attributed to mesomeric effects.
Resumo:
ESR investigations are reported in single crystals of copper diethyldithiophosphate, magnetically diluted with the corresponding diamagnetic nickel complex. The spectrum at normal gain shows hyperfine components from 63Cu, 65Cu, and 31P nuclei. At much higher gain, hyperfine interaction from 33S nuclei in the ligand is detected. The spin Hamiltonian parameters relating to copper show tetragonal symmetry. The measured parameters are g|| = 2.085, g[perpendicular]=2.025, A63Cu = 149.6 × 10−4 cm−1, A65Cu = 160.8 × 10−4 cm−1, BCu = 32.5 × 10−4 cm−1 and QCu [infinity] 5.5 × 10−4cm−1. The 31P interaction is isotropic with a coupling constant AP = 9.6 × 10−4 cm−1. Angular variation of the 33S lines shows two different hyperfine tensors indicating the presence of two chemically inequivalent Cu[Single Bond]S bonds. The experimentally determined hyperfine constants are A 1s=34.9×10−4 cm−1, B 1s=26.1×10−4 cm−1, A 2s=60.4×10−4 cm−1, B2s=55.5×10−4 cm−1. The hyperfine parameters show that the hybridization of the ligand orbitals is very sensitive to the symmetry around the ligand. The g values and Cu hyperfine parameters are not much affected by the distortions occurring in the ligand. The energies of the d-d transitions are determined by optical absorption measurements on Cu diethyldithiophosphate in solution. Using the spin Hamiltonian parameters together with optical absorption results, the MO parameters for the complex are calculated. It is found that in addition to the sigma bond, the pi bonds are also strongly covalent. ©1973 The American Institute of Physics.
Resumo:
The in vitro development of hamster preimplantation embryos is supported by non-glucose energy substrates. To investigate the importance of embryonic metabolism, influence of succinate and malate on the development of hamster 8-cell embryos to blastocysts was examined using a chemically defined protein-free modified hamster embryo culture medium-2 (HECM-2m). There was a dose-dependent influence of succinate on blastocyst development; 0.5 mM succinate was optimal (85.1% ± 3.9 vs. 54.5% ± 3.5). In succinate-supplemented HECM-2m, blastocyst development was reduced by omission of lactate (68.5% ± 7.2), but not pyruvate (85.8% ± 6.2) or glutamine (84.1% ± 2.1). Succinate along with either glutamine or lactate or pyruvate poorly supported blastocyst development (28%-58%). Malate also stimulated blastocyst development; 0.01 mM malate was optimal (86.3% ± 2.8). Supplementation of both succinate and malate to HECM-2m supported maximal (100%) blastocyst development, which was inhibited 4-fold by the addition of glucose/phosphate. The mean cell numbers (MCN) of blastocysts cultured in succinate-supplemented HECM-2m was higher (28.3 ± 1.1) than it was for those cultured in the absence of glutamine or pyruvate (range 20-24). The MCN was the highest (33.4 ± 1.6) for blastocysts cultured in succinate-malate-supplemented HECM-2m followed by those in succinate (28.3 ± 1.1) or malate (24.7 ± 0.5) supplemented HECM-2m. Embryo transfer experiments showed that 29.8% (±4.5) of transferred blastocysts cultured in succinate-malate-supplemented HECM-2m produced live births, similar (P > 0.1) to the control transfers of freshly recovered 8-cells (33.5% ± 2.0) or blastocysts (28.9% ± 3.0). These data show that supplementation of succinate and malate to HECM-2m supports 100% development of hamster 8-cell embryos to high quality viable blastocysts and that non-glucose oxidizable energy substrates are the most preferred components in hamster embryo culture medium. Mol. Reprod. Dev. 47:440-447, 1997. © 1997 Wiley-Liss, Inc.