87 resultados para Procedure (Law)
Resumo:
In this paper, we have first given a numerical procedure for the solution of second order non-linear ordinary differential equations of the type y″ = f (x;y, y′) with given initial conditions. The method is based on geometrical interpretation of the equation, which suggests a simple geometrical construction of the integral curve. We then translate this geometrical method to the numerical procedure adaptable to desk calculators and digital computers. We have studied the efficacy of this method with the help of an illustrative example with known exact solution. We have also compared it with Runge-Kutta method. We have then applied this method to a physical problem, namely, the study of the temperature distribution in a semi-infinite solid homogeneous medium for temperature-dependent conductivity coefficient.
Resumo:
A simple and accurate method for the determination of 0.25 to 1.0 μg. of manganese (in samples containing 1 to 4 μg. of manganese) has been developed by modifying the conditions for the reaction between permanganate and benzidine. Manganese is oxidized with potassium periodate in orthophosphoric acid and selectively estimated in the presence of excess oxidant with benzidine in formic acid. The procedure is applicable for estimation of manganese in biological samples, with recoveries in the range 97.5 to 106.1%.
Resumo:
The steady flow of a power law fluid in annuli with porous walls is investigated. The solution for the axial velocity component is obtained as a power series in terms of the cross flow Reynolds number, the first term of the series giving the solution for the case of the solid wall annulus. The cross flow is restricted to be such that the rate of injection of fluid at one wall of the annulus is equal to the rate of suction at the other wall and also we have considered only very small values of the cross flow velocity. The velocity profiles are drawn for different values of n and for different gaps and the results are discussed in detail. The behaviour of the average flux, in different eases is also discussed.
Resumo:
This paper reports on the investigations of laminar free convection heat transfer from vertical cylinders and wires whose surface temperature varies along the height according to the relation TW - T∞ = Nxn. The set of boundary layer partial differential equations and the boundary conditions are transformed to a more amenable form and solved by the process of successive substitution. Numerical solutions of the first approximated equations (two-point nonlinear boundary value type of ordinary differential equations) bring about the major contribution to the problem (about 95%), as seen from the solutions of higher approximations. The results reduce to those for the isothermal case when n=0. Criteria for classifying the cylinders into three broad categories, viz., short cylinders, long cylinders and wires, have been developed. For all values of n the same criteria hold. Heat transfer correlations obtained for short cylinders (which coincide with those of flat plates) are checked with those available in the literature. Heat transfer and fluid flow correlations are developed for all the regimes.
Resumo:
The effects of power-law plasticity (yield strength and strain hardening exponent) on the plastic strain distribution underneath a Vickers indenter was systematically investigated by recourse to three-dimensional finite element analysis, motivated by the experimental macro-and micro-indentation on heat-treated Al-Zn-Mg alloy. For meaningful comparison between simulated and experimental results, the experimental heat treatment was carefully designed such that Al alloy achieve similar yield strength with different strain hardening exponent, and vice versa. On the other hand, full 3D simulation of Vickers indentation was conducted to capture subsurface strain distribution. Subtle differences and similarities were discussed based on the strain field shape, size and magnitude for the isolated effect of yield strength and strain hardening exponent.
Resumo:
Inductors are important energy storage elements that are used as filters in switching power converters. The operating efficiency of power inductors depend on the initial design choices and they remain as one of the most inefficient elements in a power converter. The focus of this paper is to explore the inductor design procedure from the point of efficiency and operating temperature. A modified form of the area product approach is used as starting point for the inductor design. The equations which estimate the power loss in core and copper winding are described. The surface temperature of the inductor is modelled using heat transfer equations for radiation and natural convection. All design assumptions are verified by actual experimental data and results show a good match with the analysis.
Resumo:
In this work a single edge notched plate (SEN(T)) subjected to a tensile stress pulse is analysed, using a 2D plane strain dynamic finite element procedure. The interaction of the notch with a pre-nucleated hole ahead of it is examined. The background material is modelled by the Gurson constitutive law and ductile failure by microvoid coalescence in the ligament connecting the notch and the hole is simulated. Both rate independent and rate dependent material behaviour is considered. The notch tip region is subjected to a range of loading rates j by varying the peak value and the rise time of the applied stress pulse. The results obtained from these simulations are compared with a three point bend (TPB) specimen subjected to impact loading analysed in an earlier work [3] The variation of J at fracture initiation, J(c), with average loading rate j is obtained from the finite element simulations. It is found that the functional relationship between J(c) and j is fairly independent of the specimen geometry and is only dependent on material behaviour.
Resumo:
Reconstructions in optical tomography involve obtaining the images of absorption and reduced scattering coefficients. The integrated intensity data has greater sensitivity to absorption coefficient variations than scattering coefficient. However, the sensitivity of intensity data to scattering coefficient is not zero. We considered an object with two inhomogeneities (one in absorption and the other in scattering coefficient). The standard iterative reconstruction techniques produced results, which were plagued by cross talk, i.e., the absorption coefficient reconstruction has a false positive corresponding to the location of scattering inhomogeneity, and vice-versa. We present a method to remove cross talk in the reconstruction, by generating a weight matrix and weighting the update vector during the iteration. The weight matrix is created by the following method: we first perform a simple backprojection of the difference between the experimental and corresponding homogeneous intensity data. The built up image has greater weightage towards absorption inhomogeneity than the scattering inhomogeneity and its appropriate inverse is weighted towards the scattering inhomogeneity. These two weight matrices are used as multiplication factors in the update vectors, normalized backprojected image of difference intensity for absorption inhomogeneity and the inverse of the above for the scattering inhomogeneity, during the image reconstruction procedure. We demonstrate through numerical simulations, that cross-talk is fully eliminated through this modified reconstruction procedure.
Resumo:
The systems formalism is used to obtain the interfacial concentration transients for power-law current input at an expanding plane electrode. The explicit results for the concentration transients obtained here pertain to arbitrary homogeneous reaction schemes coupled to the oxidant and reductant of a single charge-transfer step and the power-law form without and with a preceding blank period (for two types of power-law current profile, say, (i) I(t) = I0(t−t0)q for t greater-or-equal, slanted t0, I(t) = 0 for t < t0; and (ii) I(t) = I0tq for t greater-or-equal, slanted t0, I(t) = 0 for t < t0). Finally the potential transients are obtained using Padé approximants. The results of Galvez et al. (for E, CE, EC, aC) (J. Electroanal. Chem., 132 (1982) 15; 146 (1983) 221, 233, 243), Molina et al. (for E) (J. Electroanal. Chem., 227 (1987) 1 and Kies (for E) (J. Electroanal. Chem., 45 (1973) 71) are obtained as special cases.
Resumo:
A general method for generation of base-pairs in a curved DNA structure, for any prescribed values of helical parameters--unit rise (h), unit twist (theta), wedge roll (theta R) and wedge tilt (theta T), propeller twist (theta p) and displacement (D) is described. Its application for generation of uniform as well curved structures is also illustrated with some representative examples. An interesting relationship is observed between helical twist (theta), base-pair parameters theta x, theta y and the wedge parameters theta R, theta T, which has important consequences for the description and estimation of DNA curvature.
Resumo:
We evaluate the commutator of the Gauss law constraints starting from the chirally gauged Wess-Zumino-Witten action. The calculations are done at tree level, i.e. by evaluating corresponding Poisson brackets. The results are compared with commutators obtained by others directly from the gauged fermionic theory, and with Faddeev's results based on cohomology.
Resumo:
Given an n x n complex matrix A, let mu(A)(x, y) := 1/n vertical bar{1 <= i <= n, Re lambda(i) <= x, Im lambda(i) <= y}vertical bar be the empirical spectral distribution (ESD) of its eigenvalues lambda(i) is an element of C, i = l, ... , n. We consider the limiting distribution (both in probability and in the almost sure convergence sense) of the normalized ESD mu(1/root n An) of a random matrix A(n) = (a(ij))(1 <= i, j <= n), where the random variables a(ij) - E(a(ij)) are i.i.d. copies of a fixed random variable x with unit variance. We prove a universality principle for such ensembles, namely, that the limit distribution in question is independent of the actual choice of x. In particular, in order to compute this distribution, one can assume that x is real or complex Gaussian. As a related result, we show how laws for this ESD follow from laws for the singular value distribution of 1/root n A(n) - zI for complex z. As a corollary, we establish the circular law conjecture (both almost surely and in probability), which asserts that mu(1/root n An) converges to the uniform measure on the unit disc when the a(ij) have zero mean.