106 resultados para Power systems optimization
Resumo:
This paper presents a networked control systems (NCS) framework for wide area monitoring control of smart power grids. We consider a scenario in which wide area measurements are transmitted to controllers at remote locations. We model the effects of delays and packet dropouts due to limited communication capabilities in the grid. We also design a robust networked controller to damp wide-area oscillations based on information obtained from Wide Area Monitoring Systems (WAMS), and analyze the improvement in system stability due to networked control. With communication integration being an important feature of the smart grid, detailed consideration of the effects of communication is essential in the control design for future power systems. We believe that this work is an essential step in this direction.
Resumo:
This paper proposes a novel decision making framework for optimal transmission switching satisfying the AC feasibility, stability and circuit breaker (CB) reliability requirements needed for practical implementation. The proposed framework can be employed as a corrective tool in day to day operation planning scenarios in response to potential contingencies. The switching options are determined using an efficient heuristic algorithm based on DC optimal power flow, and are presented in a multi-branch tree structure. Then, the AC feasibility and stability checks are conducted and the CB condition monitoring data are employed to perform a CB reliability and line availability assessment. Ultimately, the operator will be offered multiple AC feasible and stable switching options with associated benefits. The operator can use this information, other operating conditions not explicitly considered in the optimization, and his/her own experience to implement the best and most reliable switching action(s). The effectiveness of the proposed approach is validated on the IEEE-118 bus test system. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
The application of multilevel control strategies for load-frequency control of interconnected power systems is assuming importance. A large multiarea power system may be viewed as an interconnection of several lower-order subsystems, with possible change of interconnection pattern during operation. The solution of the control problem involves the design of a set of local optimal controllers for the individual areas, in a completely decentralised environment, plus a global controller to provide the corrective signal to account for interconnection effects. A global controller, based on the least-square-error principle suggested by Siljak and Sundareshan, has been applied for the LFC problem. A more recent work utilises certain possible beneficial aspects of interconnection to permit more desirable system performances. The paper reports the application of the latter strategy to LFC of a two-area power system. The power-system model studied includes the effects of excitation system and governor controls. A comparison of the two strategies is also made.
Resumo:
The paper presents a method for transmission loss charge allocation in deregulated power systems based on Relative Electrical Distance (RED) concept. Based on RED between the generator and load nodes and the predefined bilateral power contracts, charge evaluation is carried out. Generally through some power exchange mechanism a set of bilateral contracts are determined that facilitate bilateral agreements between the generation and distribution entities. In this paper the possible charges incurred in meeting loads like generation charge, transmission charge and charge due to losses are evaluated. Case studies have been carried out on a few practical equivalent systems. Due to space limitation results for a sample 5 bus system are presented considering ideal load/generation power contracts and deviated load/generation power contracts. Extensive numerical testing indicates that the proposed allocation scheme produces loss allocations that are appropriate and that behave in a physically reasonable manner.
Resumo:
For systems which can be decomposed into slow and fast subsystems, a near optimum linear state regulator consisting of two subsystem regulators can be developed. Depending upon the desired criteria, either a short term (fast controller) or a long term controller (slow controller) can be easily designed with minimum computational costs. Using this approach an example of a power system supplying a cyclic load is studied and the performance of the different controllers are compared.
Resumo:
The application of multilevel control strategies for load-frequency control of interconnected power systems is assuming importance. A large multiarea power system may be viewed as an interconnection of several lower-order subsystems, with possible change of interconnection pattern during operation. The solution of the control problem involves the design of a set of local optimal controllers for the individual areas, in a completely decentralised environment, plus a global controller to provide the corrective signal to account for interconnection effects. A global controller, based on the least-square-error principle suggested by Siljak and Sundareshan, has been applied for the LFC problem. A more recent work utilises certain possible beneficial aspects of interconnection to permit more desirable system performances. The paper reports the application of the latter strategy to LFC of a two-area power system. The power-system model studied includes the effects of excitation system and governor controls. A comparison of the two strategies is also made.
Resumo:
The operation of thyristor-controlled static VAR compensators (SVCs) at various conduction angles can be used advantageously to meet the unablanced reactive power demands in a system. However, such operation introduces harmonic currents into the AC system. This paper presents an algorithm to evaluate an optimum combination of the phase-wise reactive power generations from SVC and balanced reactive power supply from the AC system, based on the defined performance indices, namely, the telephone influence factor (TIF), the total harmonic current factor (IT) and the distortion factor (D). Results of the studies conducted on a typical distribution system are presented and discussed.
Resumo:
In developing countries high rate of growth in demand of electric energy is felt, and so the addition of new generating units becomes necessary. In deregulated power systems private generating stations are encouraged to add new generations. Finding the appropriate location of new generator to be installed can be obtained by running repeated power flows, carrying system studies like analyzing the voltage profile, voltage stability, loss analysis etc. In this paper a new methodology is proposed which will mainly consider the existing network topology into account. A concept of T-index is introduced in this paper, which considers the electrical distances between generator and load nodes.This index is used for ranking significant new generation expansion locations and also indicates the amount of permissible generations that can be installed at these new locations. This concept facilitates for the medium and long term planning of power generation expansions within the available transmission corridors. Studies carried out on a sample 7-bus system, EHV equivalent 24-bus system and IEEE 39 bus system are presented for illustration purpose.
Resumo:
In this paper a modified Heffron-Phillip's (K-constant) model is derived for the design of power system stabilizers. A knowledge of external system parameters, such as equivalent infinite bus voltage and external impedances or their equivalent estimated values is required for designing a conventional power system stabilizer. In the proposed method, information available at the secondary bus of the step-up transformer is used to set up a modified Heffron-Phillip's (ModHP) model. The PSS design based on this model utilizes signals available within the generating station. The efficacy of the proposed design technique and the performance of the stabilizer has been evaluated over a range of operating and system conditions. The simulation results have shown that the performance of the proposed stabilizer is comparable to that could be obtained by conventional design but without the need for the estimation and computation of external system parameters. The proposed design is thus well suited for practical applications to power system stabilization, including possibly the multi-machine applications where accurate system information is not readily available.
Resumo:
The recently developed single network adaptive critic (SNAC) design has been used in this study to design a power system stabiliser (PSS) for enhancing the small-signal stability of power systems over a wide range of operating conditions. PSS design is formulated as a discrete non-linear quadratic regulator problem. SNAC is then used to solve the resulting discrete-time optimal control problem. SNAC uses only a single critic neural network instead of the action-critic dual network architecture of typical adaptive critic designs. SNAC eliminates the iterative training loops between the action and critic networks and greatly simplifies the training procedure. The performance of the proposed PSS has been tested on a single machine infinite bus test system for various system and loading conditions. The proposed stabiliser, which is relatively easier to synthesise, consistently outperformed stabilisers based on conventional lead-lag and linear quadratic regulator designs.
Resumo:
Power system disturbances are often caused by faults on transmission lines. When faults occur in a power system, the protective relays detect the fault and initiate tripping of appropriate circuit breakers, which isolate the affected part from the rest of the power system. Generally Extra High Voltage (EHV) transmission substations in power systems are connected with multiple transmission lines to neighboring substations. In some cases mal-operation of relays can happen under varying operating conditions, because of inappropriate coordination of relay settings. Due to these actions the power system margins for contingencies are decreasing. Hence, power system protective relaying reliability becomes increasingly important. In this paper an approach is presented using Support Vector Machine (SVM) as an intelligent tool for identifying the faulted line that is emanating from a substation and finding the distance from the substation. Results on 24-bus equivalent EHV system, part of Indian southern grid, are presented for illustration purpose. This approach is particularly important to avoid mal-operation of relays following a disturbance in the neighboring line connected to the same substation and assuring secure operation of the power systems.
Resumo:
This paper proposes a Single Network Adaptive Critic (SNAC) based Power System Stabilizer (PSS) for enhancing the small-signal stability of power systems over a wide range of operating conditions. SNAC uses only a single critic neural network instead of the action-critic dual network architecture of typical adaptive critic designs. SNAC eliminates the iterative training loops between the action and critic networks and greatly simplifies the training procedure. The performance of the proposed PSS has been tested on a Single Machine Infinite Bus test system for various system and loading conditions. The proposed stabilizer, which is relatively easier to synthesize, consistently outperformed stabilizers based on conventional lead-lag and linear quadratic regulator designs.
Resumo:
This paper is concerned with the influence of different levels of complexity in modelling various constituent subsystems on the dynamic stability of power systems compensated by static var systems (SVS) operating on pure voltage control. The system components investigated include thyristor controlled reactor (TCR) transients, SVS delays, network transients, the synchronous generator and automatic voltage regulator (AVR). An overall model is proposed which adequately describes the system performance for small signal perturbations. The SVS performance is validated through detailed nonlinear simulation on a physical simulator.
Resumo:
Torsional interactions can occur due to the speed input Power System Stabilizer (PSS) that are primarily used to damp low frequency oscillations. The solution to this problem can be either in the form of providing a torsional filter or developing an alternate signal for the PSS. This paper deals with the formulation of a linearized state space model of the system and study of the interactions using eigenvalue analysis. The effects of the parameters of PSS and control signals on the damping of torsional modes are investigated.