297 resultados para Packet Network
Resumo:
High end network security applications demand high speed operation and large rule set support. Packet classification is the core functionality that demands high throughput in such applications. This paper proposes a packet classification architecture to meet such high throughput. We have Implemented a Firewall with this architecture in reconfigurable hardware. We propose an extension to Distributed Crossproducting of Field Labels (DCFL) technique to achieve scalable and high performance architecture. The implemented Firewall takes advantage of inherent structure and redundancy of rule set by using, our DCFL Extended (DCFLE) algorithm. The use of DCFLE algorithm results In both speed and area Improvement when It is Implemented in hardware. Although we restrict ourselves to standard 5-tuple matching, the architecture supports additional fields.High throughput classification Invariably uses Ternary Content Addressable Memory (TCAM) for prefix matching, though TCAM fares poorly In terms of area and power efficiency. Use of TCAM for port range matching is expensive, as the range to prefix conversion results in large number of prefixes leading to storage inefficiency. Extended TCAM (ETCAM) is fast and the most storage efficient solution for range matching. We present for the first time a reconfigurable hardware Implementation of ETCAM. We have implemented our Firewall as an embedded system on Virtex-II Pro FPGA based platform, running Linux with the packet classification in hardware. The Firewall was tested in real time with 1 Gbps Ethernet link and 128 sample rules. The packet classification hardware uses a quarter of logic resources and slightly over one third of memory resources of XC2VP30 FPGA. It achieves a maximum classification throughput of 50 million packet/s corresponding to 16 Gbps link rate for file worst case packet size. The Firewall rule update Involves only memory re-initialiization in software without any hardware change.
Resumo:
We present a technique for an all-digital on-chip delay measurement system to measure the skews in a clock distribution network. It uses the principle of sub-sampling. Measurements from a prototype fabricated in a 65 nm industrial process, indicate the ability to measure delays with a resolution of 0.5ps and a DNL of 1.2 ps.
Resumo:
Communication within and across proteins is crucial for the biological functioning of proteins. Experiments such as mutational studies on proteins provide important information on the amino acids, which are crucial for their function. However, the protein structures are complex and it is unlikely that the entire responsibility of the function rests on only a few amino acids. A large fraction of the protein is expected to participate in its function at some level or other. Thus, it is relevant to consider the protein structures as a completely connected network and then deduce the properties, which are related to the global network features. In this direction, our laboratory has been engaged in representing the protein structure as a network of non-covalent connections and we have investigated a variety of problems in structural biology, such as the identification of functional and folding clusters, determinants of quaternary association and characterization of the network properties of protein structures. We have also addressed a few important issues related to protein dynamics, such as the process of oligomerization in multimers, mechanism on protein folding, and ligand induced communications (allosteric effect). In this review we highlight some of the investigations which we have carried out in the recent past. A review on protein structure graphs was presented earlier, in which the focus was on the graphs and graph spectral properties and their implementation in the study of protein structure graphs/networks (PSN). In this article, we briefly summarize the relevant parts of the methodology and the focus is on the advancement brought out in the understanding of protein structure-function relationships through structure networks. The investigations of structural/biological problems are divided into two parts, in which the first part deals with the analysis of PSNs based on static structures obtained from x-ray crystallography. The second part highlights the changes in the network, associated with biological functions, which are deduced from the network analysis on the structures obtained from molecular dynamics simulations.
Resumo:
Packet forwarding is a memory-intensive application requiring multiple accesses through a trie structure. With the requirement to process packets at line rates, high-performance routers need to forward millions of packets every second with each packet needing up to seven memory accesses. Earlier work shows that a single cache for the nodes of a trie can reduce the number of external memory accesses. It is observed that the locality characteristics of the level-one nodes of a trie are significantly different from those of lower level nodes. Hence, we propose a heterogeneously segmented cache architecture (HSCA) which uses separate caches for level-one and lower level nodes, each with carefully chosen sizes. Besides reducing misses, segmenting the cache allows us to focus on optimizing the more frequently accessed level-one node segment. We find that due to the nonuniform distribution of nodes among cache sets, the level-one nodes cache is susceptible t high conflict misses. We reduce conflict misses by introducing a novel two-level mapping-based cache placement framework. We also propose an elegant way to fit the modified placement function into the cache organization with minimal increase in access time. Further, we propose an attribute preserving trace generation methodology which emulates real traces and can generate traces with varying locality. Performanc results reveal that our HSCA scheme results in a 32 percent speedup in average memory access time over a unified nodes cache. Also, HSC outperforms IHARC, a cache for lookup results, with as high as a 10-fold speedup in average memory access time. Two-level mappin further enhances the performance of the base HSCA by up to 13 percent leading to an overall improvement of up to 40 percent over the unified scheme.
Resumo:
The network scenario is that of an infrastructure IEEE 802.11 WLAN with a single AP with which several stations (STAs) are associated. The AP has a finite size buffer for storing packets. In this scenario, we consider TCP controlled upload and download file transfers between the STAs and a server on the wireline LAN (e.g., 100 Mbps Ethernet) to which the AP is connected. In such a situation, it is known (see, for example, (3), [9]) that because of packet loss due to finite buffers at the Ap, upload file transfers obtain larger throughputs than download transfers. We provide an analytical model for estimating the upload and download throughputs as a function of the buffer size at the AP. We provide models for the undelayed and delayed ACK cases for a TCP that performs loss recovery only by timeout, and also for TCP Reno.
Resumo:
Octahedral Co2+ centers have been connected by mu(3)-OH and mu(2)-OH2 units forming [Co-4] clusters which are linked by pyrazine forming a two-dimensional network. The two-dimensional layers are bridged by oxybisbenzoate (OBA) ligands giving rise to a three-dimensional structure. The [Co-4] clusters bond with the pyrazine and the OBA results in a body-centered arrangement of the clusters, which has been observed for the first time. Magnetic studies reveal a noncollinear frustrated spin structure of the bitriangular cluster, resulting in a net magnetic moment of 1.4 mu B per cluster. For T > 32 K, the correlation length of the cluster moments shows a stretched-exponential temperature dependence typical of a Berezinskii-Kosterlitz-Thouless model, which points to a quasi-2D XY behavior. At lower temperature and down to 14 K, the compound behaves as a soft ferromagnet and a slow relaxation is observed, with an energy barrier of ca. 500 K. Then, on further cooling, a hysteretic behavior takes place with a coercive field that reaches 5 Tat 4 K. The slow relaxation is assigned to the creation/annihilation of vortex-antivortex pairs, which are the elementary excitations of a 2D XY spin system.
Resumo:
In developing countries high rate of growth in demand of electric energy is felt, and so the addition of new generating units becomes necessary. In deregulated power systems private generating stations are encouraged to add new generations. Finding the appropriate location of new generator to be installed can be obtained by running repeated power flows, carrying system studies like analyzing the voltage profile, voltage stability, loss analysis etc. In this paper a new methodology is proposed which will mainly consider the existing network topology into account. A concept of T-index is introduced in this paper, which considers the electrical distances between generator and load nodes.This index is used for ranking significant new generation expansion locations and also indicates the amount of permissible generations that can be installed at these new locations. This concept facilitates for the medium and long term planning of power generation expansions within the available transmission corridors. Studies carried out on a sample 7-bus system, EHV equivalent 24-bus system and IEEE 39 bus system are presented for illustration purpose.
Resumo:
The recently developed single network adaptive critic (SNAC) design has been used in this study to design a power system stabiliser (PSS) for enhancing the small-signal stability of power systems over a wide range of operating conditions. PSS design is formulated as a discrete non-linear quadratic regulator problem. SNAC is then used to solve the resulting discrete-time optimal control problem. SNAC uses only a single critic neural network instead of the action-critic dual network architecture of typical adaptive critic designs. SNAC eliminates the iterative training loops between the action and critic networks and greatly simplifies the training procedure. The performance of the proposed PSS has been tested on a single machine infinite bus test system for various system and loading conditions. The proposed stabiliser, which is relatively easier to synthesise, consistently outperformed stabilisers based on conventional lead-lag and linear quadratic regulator designs.
Resumo:
The relationship for the relaxation time(s) of a chemical reaction in terms of concentrations and rate constants has been derived from the network thermodynamic approach developed by Oster, Perelson, and Katchalsky.Generally, it is necessary to draw the bond graph and the “network analogue” of the reaction scheme, followed by loop or nodal analysis of the network and finally solving of the resulting differential equations. In the case of single-step reactions, however, it is possible to obtain an expression for the relaxation time. This approach is simpler and elegant and has certain advantages over the usual kinetic method. The method has been illustrated by taking different reaction schemes as examples.
Location of concentrators in a computer communication network: a stochastic automation search method
Resumo:
The following problem is considered. Given the locations of the Central Processing Unit (ar;the terminals which have to communicate with it, to determine the number and locations of the concentrators and to assign the terminals to the concentrators in such a way that the total cost is minimized. There is alao a fixed cost associated with each concentrator. There is ail upper limit to the number of terminals which can be connected to a concentrator. The terminals can be connected directly to the CPU also In this paper it is assumed that the concentrators can bo located anywhere in the area A containing the CPU and the terminals. Then this becomes a multimodal optimization problem. In the proposed algorithm a stochastic automaton is used as a search device to locate the minimum of the multimodal cost function . The proposed algorithm involves the following. The area A containing the CPU and the terminals is divided into an arbitrary number of regions (say K). An approximate value for the number of concentrators is assumed (say m). The optimum number is determined by iteration later The m concentrators can be assigned to the K regions in (mk) ways (m > K) or (km) ways (K>m).(All possible assignments are feasible, i.e. a region can contain 0,1,…, to concentrators). Each possible assignment is assumed to represent a state of the stochastic variable structure automaton. To start with, all the states are assigned equal probabilities. At each stage of the search the automaton visits a state according to the current probability distribution. At each visit the automaton selects a 'point' inside that state with uniform probability. The cost associated with that point is calculated and the average cost of that state is updated. Then the probabilities of all the states are updated. The probabilities are taken to bo inversely proportional to the average cost of the states After a certain number of searches the search probabilities become stationary and the automaton visits a particular state again and again. Then the automaton is said to have converged to that state Then by conducting a local gradient search within that state the exact locations of the concentrators are determined This algorithm was applied to a set of test problems and the results were compared with those given by Cooper's (1964, 1967) EAC algorithm and on the average it was found that the proposed algorithm performs better.
Resumo:
The electrical and optical response of a field-effect device comprising a network of semiconductor-enriched single-wall carbon nanotubes, gated with sodium chloride solution is investigated. Field-effect is demonstrated in a device that uses facile fabrication techniques along with a small-ion as the gate electrolyte-and this is accomplished as a result of the semiconductor enhancement of the tubes. The optical transparency and electrical resistance of the device are modulated with gate voltage. A time-response study of the modulation of optical transparency and electrical resistance upon application of gate voltage suggests the percolative charge transport in the network. Also the ac response in the network is investigated as a function of frequency and temperature down to 5 K. An empirical relation between onset frequency and temperature is determined.
Resumo:
The network scenario is that of an infrastructure IEEE 802.11 WLAN with a single AP with which several stations (STAs) are associated. The AP has a finite size buffer for storing packets. In this scenario, we consider TCP-controlled upload and download file transfers between the STAs and a server on the wireline LAN (e.g., 100 Mbps Ethernet) to which the AP is connected. In such a situation, it is well known that because of packet losses due to finite buffers at the AP, upload file transfers obtain larger throughputs than download transfers. We provide an analytical model for estimating the upload and download throughputs as a function of the buffer size at the AP. We provide models for the undelayed and delayed ACK cases for a TCP that performs loss recovery only by timeout, and also for TCP Reno. The models are validated incomparison with NS2 simulations.
Resumo:
Tuberculosis continues to be a major health challenge, warranting the need for newer strategies for therapeutic intervention and newer approaches to discover them. Here, we report the identification of efficient metabolism disruption strategies by analysis of a reactome network. Protein-protein dependencies at a genome scale are derived from the curated metabolic network, from which insights into the nature and extent of inter-protein and inter-pathway dependencies have been obtained. A functional distance matrix and a subsequent nearness index derived from this information, helps in understanding how the influence of a given protein can pervade to the metabolic network. Thus, the nearness index can be viewed as a metabolic disruptability index, which suggests possible strategies for achieving maximal metabolic disruption by inhibition of the least number of proteins. A greedy approach has been used to identify the most influential singleton, and its combination with the other most pervasive proteins to obtain highly influential pairs, triplets and quadruplets. The effect of deletion of these combinations on cellular metabolism has been studied by flux balance analysis. An obvious outcome of this study is a rational identification of drug targets, to efficiently bring down mycobacterial metabolism.
Resumo:
With the liberalisation of electricity market it has become very important to determine the participants making use of the transmission network.Transmission line usage computation requires information of generator to load contributions and the path used by various generators to meet loads and losses. In this study relative electrical distance (RED) concept is used to compute reactive power contributions from various sources like generators, switchable volt-amperes reactive(VAR) sources and line charging susceptances that are scattered throughout the network, to meet the system demands. The transmission line charge susceptances contribution to the system reactive flows and its aid extended in reducing the reactive generation at the generator buses are discussed in this paper. Reactive power transmission cost evaluation is carried out in this study. The proposed approach is also compared with other approaches viz.,proportional sharing and modified Y-bus.Detailed case studies with base case and optimised results are carried out on a sample 8-bus system. IEEE 39-bus system and a practical 72-bus system, an equivalent of Indian Southern grid are also considered for illustration and results are discussed.
Resumo:
Understanding the functioning of a neural system in terms of its underlying circuitry is an important problem in neuroscience. Recent d evelopments in electrophysiology and imaging allow one to simultaneously record activities of hundreds of neurons. Inferring the underlying neuronal connectivity patterns from such multi-neuronal spike train data streams is a challenging statistical and computational problem. This task involves finding significant temporal patterns from vast amounts of symbolic time series data. In this paper we show that the frequent episode mining methods from the field of temporal data mining can be very useful in this context. In the frequent episode discovery framework, the data is viewed as a sequence of events, each of which is characterized by an event type and its time of occurrence and episodes are certain types of temporal patterns in such data. Here we show that, using the set of discovered frequent episodes from multi-neuronal data, one can infer different types of connectivity patterns in the neural system that generated it. For this purpose, we introduce the notion of mining for frequent episodes under certain temporal constraints; the structure of these temporal constraints is motivated by the application. We present algorithms for discovering serial and parallel episodes under these temporal constraints. Through extensive simulation studies we demonstrate that these methods are useful for unearthing patterns of neuronal network connectivity.