138 resultados para Oxidative metabolism
Resumo:
The kinetics of inhibition of oxidative phosphorylation by the antihypercholes-terolaemic compound p-chlorophenoxyisobutyrate reveal cooperativity characteristic of allosteric interactions. Hill plots and Dixon plots give clear indication that the compound interferes with two distinct steps in the energy-transfer pathway. The values of interaction coefficients calculated from the Hill plots were two and four in the direction of ATP synthesis and one and two in the reverse direction. This could mean either that the pathways of synthesis and breakdown of ATP are different, or that if the pathways are the same, only half the inhibitor-binding sites function in the reverse direction.
Resumo:
Abstract is not available.
Resumo:
Some of the enzyme systems in the formation of p-hydroxybenzoate from tyrosine have been studied in the rat liver in vitro. The conversion of p-hydroxycinnamate into p-hydroxybenzoate, which was found in rat liver mitochondria showed a number of differences when compared with the b-oxidation of fatty acids. Studies with p-hydroxy[U-14C]cinnamate indicated that 14CO2 was released during the formation of p-hydroxybenzoate. The formation of p-hydroxycinnamate from tyrosine of p-hydroxyphenyl-lactate could not be demonstrated in vitro. The interconversion of p-hydroxycinnamate and p-hydroxyphenylpropionate was demonstrated in rat liver mitochondria.
Resumo:
The nucleotide coenzyme cytidine-5-diphospho-choline is highly folded. The CMP-5 parts of the molecules in the crystal structure are strongly linked by metal ligation and hydrogen bonds leaving the phosphoryl-choline residues relatively free. Cytidine-5-diphosphoric acid exists as a zwitterion with N31 protonated. The P−O bond lengths from the anhydride bridging oxygen in the pyrophosphate are significantly different.
Resumo:
A new analogue of vitamin A, viz., retinoic acid anhydride was prepared, for the first time, by the action of thionyl chloride on retinoic acid in benzene containing pyridine. The amhydride was charcterised by its chromatographic properties, elemental analysis, ultraviolet absorption, infrared and nuclear magnetic resonance spectral characteristics. The compound could be readily hydrolysed to retinoic acid both by acid and alkali treatments and reduced by lithium aluminium hydride to vitamin A alcohol (retinol). The spectral changes with antimony trichloride reagent were similar to those observed for retinoic acid. The metabolism of retinoic acid anhydride was found to be similar to that of retinoic acic. When administered either orally or intraperitoneally, the compound promotes growth in vitamin A-deficient rats. Time-course experiments revealed that retinoic acid anhydride is converted into retinoic acid by non-enzymatic hydrolysis and thereby exerts its biological activity. The biopotency of the anhydride was found to be nearly the same as that of the acid. A new method of preparing esters of retinoic acid employing retinoic acid anhydride as an intermediate, has been described.
Resumo:
A fungus capable of degrading DL-phenylalanine was isolated from the soil and identified as Aspergillus niger. It was found to metabolize DL-phenylalanine by a new pathway involving 4-hydroxymandelic acid. D-Amino acid oxidase and L-phenylalanine: 2-oxoglutaric acid aminotransferase initiated the degradation of D- and L-phenylalanine, respectively. Both phenylpyruvate oxidase and phenylpyruvate decarboxylase activities could be demonstrated in the cell-free system. Phenylacetate hydroxylase, which required reduced nicotinamide adenine dinucleotide phosphate, converted phenylacetic acid to 2- and 4-hydroxyphenylacetic acid. Although 4-hydroxyphenylacetate was converted to 4-hydroxymandelate, 2-hydroxyphenylacetate was not utilized until the onset of sporulation. During sporulation, it was converted rapidly into homogentisate and oxidized to ring-cleaved products. 4-Hydroxymandelate was degraded to protocatechuate via
Resumo:
Microorganisms capable of degrading dl-synephrine were isolated from soil of Citrus gardens by enrichment culture, with dl-synephrine as the sole source of carbon and nitrogen. An organism which appears to be an arthrobacter, but which cannot be identified with any of the presently recognized species was predominant in these isolates. It was found to metabolize synephrine by a pathway involving p-hydroxyphenylacetaldehyde, p-hydroxyphenylacetic acid, and 3,4-dihydroxyphenylacetic acid as intermediates. Some of the enzymes of this pathway were demonstrated in cell-free extracts. An aromatic oxygenase, which could also be readily obtained in a cell-free system, was found to degrade 3,4-dihydroxyphenylacetic acid by meta cleavage.
Resumo:
Preliminary studies on the metabolism of mandelic acid by Neurospora crassa reveal the operation of a pathway for its degradation which involves benzoyl formic acid, benzaldehyde, benzoic acid, 4-hydroxybenzoic acid, and protocatechuic acid as the intermediates. This pathway is different from that followed by bacterial systems and is the same as that observed in Aspergillus niger.
Resumo:
Administration of human chorionic gonadotrophin (HCG) or ovine LH to immature rats primed with pregnant mare serum gonadotrophin (PMSG) stimulated the rate of synthesis of polyadenylic acid (poly A)-rich RNA in the ovaries. The rate of total RNA synthesis was not affected significantly by hormone treatment, whereas protein synthesis was enhanced. The increase in the rate of synthesis of poly(A)-rich RNA in the ovaries could be inferred as induction of messenger RNA synthesis after the hormone treatment. The poly(A)-rich nature of the isolated RNA was established by oligo(dT)–cellulose chromatography, binding to Millipore filter disks and hydridization with [3H]polyuridylic acid. The level of cyclic AMP in the ovaries of such rats was also raised after administration of LH, the increase coincided with the increase in the rate of synthesis of poly(A)-rich RNA. The implications of these results are discussed in the light of the biochemical basis of luteinization and the action of LH.
Resumo:
1. (1) The relative abilities of the various cell fractions of rat and chicken liver to oxidize and reduce retinal and 8'- and 12'-apo-β-carotenal were investigated and it has been shown that, while retinal is exclusively oxidized by the soluble fraction, the apocarotenals are mostly oxidized by the particulate fractions of the homogenate. 2. (2) Addition of NAD+ or NADP+ markedly activated the oxidation of the apocarotenals, but not of retinal by the particulate fractions. 3. (3) Considerable amounts of retinal and 8'-, 10'- and 12'-apo-β-carotenal were isolated from the intestine of chickens fed β-carotene and these apocarotenoids were conclusively identified. 4. (4) Significant amounts of 8'-, 10'- and 12'-apo-β-carotenoic acids were isolated from the intestine of rats given 8'-apo-β-carotenal and these apocarotenoic acids were also conclusively identified. 5. (5) In the light of these observations it is suggested that during conversion to vitamin A, the β-carotene molecule is simultaneously attacked by the dioxygenase at several double bonds, the primary attack being at the central double bond and a tentative scheme for the mechanism of conversion is proposed.
Resumo:
Thiobacillus novellus was able to grow with oxalate, formate, formamide, and methanol as sole sources of carbon and energy. Extensive growth on methanol required yeast extract or vitamins. Glyoxylate carboligase was detected in extracts of oxalate-grown cells. Ribulose bisphosphate carboxylase was found in extracts of cells grown on formate, formamide, and thiosulfate. These data indicate that oxalate is utilized heterotrophically in the glycerate pathway, and formate and formamide are utilized autotrophically in the ribulose bisphosphate pathway. Nicotinamide adenine dinucleotide-linked formate dehydrogenase was present in extracts of oxalate-, formate-, formamide-, and methanol-grown cells but was absent in thiosulfate- and acetate-grown cells.
Resumo:
The metabolism of phenylalanine by a strain of Aspergillus niger, isolated from the soil by enrichment culture has been studied. Analyses of the culture filtrates and replacement studies with various metabolites have revealed the operation of a degradative pathway involving p-hydroxymandelate as a key intermediate in this organism, p-Hydroxymandelate has been isolated from the cultural filtrates and its identity established by UV, IR and chromatographic techniques. A scheme for the degradation of phenylalanine in this organism has been proposed.
Resumo:
Four new ternary copper(II) complexes of alpha-amino acid having polypyridyl bases of general formulation [Cu(L-ala)(B)(H2O)](X)(1-4), where L-ala is L-alanine, B is an N,N-donor heterocyclic base, viz. 2,2'-bipyridine (bpy, 1), 1,10-phenanthroline (phen, 2) and 5,6-phenanthroline dione (dione, 3), dipyrido[3,2:2',3'-f] quinoxaline (dpq, 4), and X = ClO4-/NO3- are synthesized, characterized by various spectroscopic and X-ray crystallographic methods. The complexes show a distorted square-pyramidal (4 + 1) CuN3O2 coordination geometry. The one-electron paramagnetic complexes (1-4) display a low energy d-d band near 600 nm in aqueous medium and show a quasi-reversible cyclic voltammetric response due to one-electron Cu(II)/Cu(I) reduction near - 100 mV (versus SCE) in DMF-0.1 M TBAP. Binding interactions of the complexes with calf thymus DNA (CT-DNA) were investigated by UV-Vis absorption titration, ethidium bromide displacement assay, viscometric titration experiment and DNA melting studies. All the complexes barring the complexes 1 and 3 are avid binder to the CT-DNA in the DNA minor groove giving an order: 4 > 2 >>>1, 3. The complexes 2 and 4 show appreciable chemical nuclease activity in the presence of 3-mercaptopropionic acid (MPA) as a reducing agent. Hydroxyl radical was investigated to be the DNA cleavage active species. Control experiments in the presence of distamycin-A show primarily minor groove-binding propensity for the complexes 2 and 4 to the DNA.
Resumo:
A microorganism of the genus Pseudomonas has been isolated from the soil by enrichment culture techniques with linalool(I) as the sole source of carbon and energy. The organism is also capable of utilizing limonene, citronellol, and geraniol as substrates but fails to grow on citral, critranellal, and 1,8-cineole. Fermentation of linalool by this bacterium in a mineral salt medium results in the formation of 10-hydroxylinalool(II), oleuropeic acid (IX), 2-vinyl-2-methyl-5-hydroxyisopropyl-tetraphydrofuran)linalool oxide, V), 2-vinyl-2-methyl-tetrahydrofuran-5-one(unsaturated lactone, VI), and few unidentified minor metabolities. Probable pathways for the biodegradation of linalool are presented.
Resumo:
Tuberculosis continues to be a major health challenge, warranting the need for newer strategies for therapeutic intervention and newer approaches to discover them. Here, we report the identification of efficient metabolism disruption strategies by analysis of a reactome network. Protein-protein dependencies at a genome scale are derived from the curated metabolic network, from which insights into the nature and extent of inter-protein and inter-pathway dependencies have been obtained. A functional distance matrix and a subsequent nearness index derived from this information, helps in understanding how the influence of a given protein can pervade to the metabolic network. Thus, the nearness index can be viewed as a metabolic disruptability index, which suggests possible strategies for achieving maximal metabolic disruption by inhibition of the least number of proteins. A greedy approach has been used to identify the most influential singleton, and its combination with the other most pervasive proteins to obtain highly influential pairs, triplets and quadruplets. The effect of deletion of these combinations on cellular metabolism has been studied by flux balance analysis. An obvious outcome of this study is a rational identification of drug targets, to efficiently bring down mycobacterial metabolism.